HITACHI INVERTER

SJH300 SERIES

INSTRUCTION MANUAL

Three phase input 200/400V class

After reading this manual, keep it handy for future reference.

NB5397CX

SAFETY

For the Best Results with **SJH300** Series inverter, read this manual and all of the warning sign attached to the inverter carefully before installing and operating it, and follow the instructions exactly. Keep this manual handy for your quick reference.

Definitions and Symbols

A safety instruction (message) is given with a hazard alert symbol and a signal word;

WARNING or **CAUTION**. Each signal word has the following meaning throughout this manual.

This symbol means hazardous high voltage. It used to call your attention to items or operations that could be dangerous to you or other persons operating this equipment.

Read these message and follow these instructions carefully.

This is the "Safety Alert Symbol" This symbol is used to call your attention to items or operations that could be dangerous to you or other persons operating this equipment.

Read these messages and follow these instructions carefully.

WARNING

Indicates a potentially hazardous situation which, if not avoided, can result in serious injury or death.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, can result in minor to moderate injury, or serious damage of product. The matters described under Arcayufiont avoided, lead to serious results depending on the situation. Important matters are described in **CAUTION** (as well as **WARNING**), so be sure to observe them.

NOTE

NOTE

Notes indicate an area or subject of special merit, emphasizing either the product's capabilities or common errors in operation or maintenance.

HAZARDOUS HIGH VOLTAGE

Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there might be exposed components with cases or protrusions at or above line potential. Extreme care should be taken to product against shock.

Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power before checking controllers or performing maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on an electronic controller or rotating electrical equipment.

PRECAUTION

WARNING : This is equipment should be installed, adjusted and serviced by qualified electrical maintenance personal familiar with the construction and operation of the equipment and the hazards involved. Failure to observe this precaution could results in bodily injury.

WARNING : The user is responsible for ensuring that all driven machinery, drive train mechanism not supplied by Hitachi Industrial Equipment Systems Co., Ltd., and process line material are capable of safe operation at an applied frequency of 150% of the maximum selected frequency range to the AC motor. Failure to do so can result in destruction of equipment and injury to personnel should a single point failure occur.

▲ WARNING : For protection, install an earth leakage breaker with a high frequency circuit capable of large currents to avoid an unnecessary operation. The ground fault protection circuit is not designed to protect personal injury.

WARNING : HAZARD OF ELECTRICAL SHOCK. DISCONNECT INCOMING POWER BEFORE WORKING ON THIS CONTROL.

WARNING : SEPARATE MOTOR OVERCURRENT, OVERLOAD AND OVERHEATING PROTECTION IS REQUIRED TO BE PROVIDED IN ACCORDANCE WITH THE SAFETY CODES REQUIRED BY JURISDICTIONAL AUTHORITIES.

▲ CAUTION : These instructions should be read and clearly understood before working on SJH300 series equipment.

▲ CAUTION : Proper grounds, disconnecting devices and other safety devices and their location are the responsibility of the user and are not provided by Hitachi Industrial Equipment Systems Co., Ltd.

▲ CAUTION : Be sure to connect a motor thermal switch or overload devices to the SJH300 series controller to assure that inverter will shut down in the event of an overload or an overheated motor.

▲ CAUTION : DANGEROUS VOLTAGE EXISTS UNTIL CHARGE LAMP IS OFF.

CAUTION : Rotating shafts and above ground electrical potentials can be hazardous. Therefore, it is strongly recommended that all electrical work conform to the National Electrical Codes and local regulations. Only qualified personnel should perform installation, alignment and maintenance. Factory recommended test procedures, included in the instruction manual, should be followed. Always disconnect electrical power before working on the unit.

NOTE : POLLUTION DEGREE 2

The inverter must be used environment of the degree 2.

Typical constructions that reduce the possibility of conductive pollution are;

- 1) The use of an unventilated enclosure
- 2) The use of a filtered ventilated enclosure when the ventilation is fan forced that is, ventilation is accomplished by one or more blowers within the enclosure that provide a positive intake and exhaust.

Cautions for EMC (Electromagnetic Compatibility)

You are required to safety the EMC directive (89/336/EEC) when using the SJH300 inverter in a European country. To safety the EMC directive and to comply with standard, follows the checklist below.

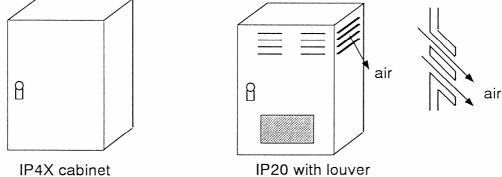
WARNING : This equipment should be installed, adjusted, and serviced by qualified personal familiar with construction and operation of the equipment and the hazards involved. Failure to observe this precaution could result in bodily injury.

- 1. The power supply to SJH300 inverter must meet these specifications:
 - a. Voltage fluctuation +/-10% or less.
 - b. Voltage imbalance +/-3% or less.
 - c. Frequency variation +/-4% or less.
 - d. Voltage distortion THD = 10% or less.

2.Installation measure:

- a. Use a filter designed for SJH300 inverter.
- 3.Wiring
 - a. Shielded wire (screened cable) is required for motor wiring, and the length must be less than 20 meters.
 - b. Separate the main circuit from the signal/process circuit wiring.
 - c. In case of remote operating with connector cable, the inverter does not conform to EMC.

4. Environmental conditions – when using a filter, follow these guidelines:


- a. Ambient air temperature: -10 +50 °C.
- b. Humidity: 20 to 90% RH (non-condensing)
- c. Vibration: 5.9 m/sec² (0.6 G) 10 55Hz. (SJH300-2.5-22LF/ 2.5-22HF)
- d. Location: 1000meters or less altitude, indoors (no corrosive gas or dust)

Conformity to the Low Voltage Directive (LVD)

The protective enclosure must conform to the Low Voltage Directive. The inverter can conform to the LVD by mounting into a cabinet or by adding covers as follows.

1.Cabinet and Cover

The inverter must be installed into a cabinet which has the protection degree of Type IP2X. In addition the top surfaces of cabinet that are easily accessible shall meet at least the requirements of the Protective Type IP4X, or which is constructed to prevent small objects from entering inverter.

IP4X cabinet

Fig. Inverter cabinet

UL Warnings and Cautions Manual for SJH300 series

This auxiliary instruction manual should be delivered to the end user.

1. Wiring Warnings for Electrical Practices and Wire Specifications

- (1) **WARNING**: "Use 60/75 °C CU wire only" or equivalent.
- (2) **ARNING** : "Suitable for use on a circuit capable or delivering not more than 10,000 rms symmetrical amperes, 240 V maximum." For models with suffix L.
- (3) **ARNING** : "Suitable for use on a circuit capable or delivering not more than 10,000 rms symmetrical amperes, 480 V maximum." For models with suffix H.

2. Tightening Torque and Wire Range

(1) **MARNING**: Tightening torque and wire range for field wiring terminals are marked adjacent to the terminal or on the wiring diagram.

Model Name	Tightening Torque [N•m]	Wire Range (AWG)
SJH300-2.5L	1.5	14
SJH300-3.5L	1.5	14
SJH300-5.5L	1.5	10
SJH300-8L	2.5	8
SJH300-11L	2.5	6
SJH300-16L	4.9	4
SJH300-22L	4.9	2
SJH300-2.5H	1.5	18
SJH300-3.5H	1.5	16
SJH300-5.5H	1.5	14
SJH300-8H	2.5	12
SJH300-11H	2.5	10
SJH300-16H	4.9	8
SJH300-22H	4.9	6

3.Circuit Breaker / Fuse Size

(1) **ARNING**: Distribution fuse/circuit breaker size marking is included in the manual to indicate that the unit shall be connected with an UL Listed inverse time circuit breaker, rated 600 V with the current ratings or an UL Listed fuse as shown in the table below.

Model Name	Circuit Breaker [A]	Fuse [A]
SJH300-2.5L	10	10
SJH300-3.5L	15	15
SJH300-5.5L	20	20
SJH300-8L	30	30
SJH300-11L	40	40
SJH300-16L	60	60
SJH300-22L	80	80
SJH300-2.5H	10	10
SJH300-3.5H	10	10
SJH300-5.5H	15	15
SJH300-8H	15	15
SJH300-11H	20	20
SJH300-16H	30	30
SJH300-22H	40	40

4. Motor overload protection

These inverters provide solid state motor overload protection. Set parameter b012,b212,b312,b412 or b512 using the following instructions.

b012 "electronic overload protection"

b212 "electronic overload protection, 2nd motor"

b312 "electronic overload protection, 3rd motor"

b412 "electronic overload protection, 4th motor"

b512 "electronic overload protection, 5th motor"

set the rated current [A] of the motor.

setting range is 0.2*rated current to 1.2*rated current.

(1) **WARNING** :

When two or more motors are connected to the inverter, they cannot be protected by the electronic overload protection. Install an external thermal relay to each motor.

5.Others

"Field wiring connection must be made by an UL Listed and CSA Certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer. ", or equivalent wording included in the manual.

Revision History Table

No.	Revision Contents	The Date of Issue	Operation Manual No.
1	Initial Release of Manual NB5397CX	Aug. 2003	NB5397CX

1.Installation

• Be sure to install the unit on flame resistant material such as metal. p.2-2 Otherwise, there is a danger of fire. • Be sure not to place anything inflammable in the vicinity. p.2-2 Otherwise, there is a danger of fire. • Do not carry unit by top cover, always carry by supporting base of unit. p.2-2 There is a risk of falling and injury. • Be sure not to let the foreign matter enter such as cut wire refuse, spatter from welding, iron refuse, wire, dust, etc. p.2-5 Otherwise, there is a danger of fire. • Be sure to install it in a place which can bear the weight according to the specifications in the text. (Chapter 6. Specifications) p.2-1 Otherwise, it may fall and there is a danger of injury. • Be sure to install the unit on a perpendicular wall which is not subject to vibration. p.2-3 Otherwise, it may fall and there is a danger of injury. · Be sure not to install and operate an inverter which is damaged or parts of p.2-2 which are missing. Otherwise, there is a danger of injury. • Be sure to install it in a room which is not exposed to direct sunlight and is well ventilated. Avoid environments which tend to be high in temperature, high in humidity or to have dew condensation, as well as places with dust, p.2-2 corrosive gas, explosive gas, inflammable gas, grinding-fluid mist, salt damage, etc. Otherwise, there is a danger of fire.

2.Wiring

• Be sure to ground the unit. p.2-9 Otherwise, there is a danger of electric shock and/or fire. • Wiring work shall be carried out by electrical experts. p.2-6 Otherwise, there is a danger of electric shock and/or fire. • Implement wiring after checking that the power supply is off. p.2-8 It might incur electric shock and/or fire. • After installing the main body, carry out wiring. p.2-5 Otherwise, there is a danger of electric shock and/or injury. • Do not remove the rubber bush. (2.5 to 22kVA) Due to the possibility that a wire may be damaged, shorted or may have a p.2-4 ground fault with the edge of the wiring cover.

 Make sure that the input voltage is: Three phase 200 to 240V 50/60Hz (for models with suffix L). Three phase 380 to 480V 50/60Hz (for models with suffix H). 	 p.2-6
 Be sure not to input a single phase. Otherwise, there is a danger of fire. 	 p.2-8
 Be sure not to connect AC power supply to the output terminals(U, V, W). Otherwise, there is a danger of injury and/or fire. 	 p.2-5
 Be sure not to connect the resistor to DC terminals (PD,P and N) directly. Otherwise, there is a danger of fire. 	 p.2-5
 Be sure to set the earth leakage breaker or the fuse(s) (the same phase as the main power supply) in the operation circuit. Otherwise, there is a danger of fire. 	 p.2-12
 As for motor leads, earth leakage breakers and electromagnetic contactors, be sure to use the equivalent ones with the specified capacity (rated). Otherwise, there is a danger of fire. 	 p.2-12
 Do not stop operation by switching off the electromagnetic contactors on the primary or secondary sides of the inverter. Otherwise, there is a danger of injury and/or machine breakage. 	 p.2-6
 Fasten the screws with the specified fastening torque. Check so that there is no loosening of screws. Otherwise, there is a danger of fire. 	 p.2-12

3.Control and operation

 While the inverter is energized, be sure not to touch the main terminal or to check the signal or put on/off wire and/or connector. Otherwise, there is a danger of electric shock. 	 p.3-1
 Be sure to turn on the input power supply after closing the front case. While being energized, be sure not to open the front case. Otherwise, there is a danger of electric shock. 	 p.3-1
 Be sure not to operate the switches with wet hands. Otherwise, there is a danger of electric shock. 	 p.3-1
 While the inverter is energized, be sure not to touch the inverter terminals even during stoppage. Otherwise, there is a danger of electric shock. 	 p.3-1
 If the retry mode is selected, it may suddenly restart during the trip stop. Be sure not to approach the machine. (Be sure to design the machine so that personnel safety will be secured even if it restarts.) Otherwise, there is a danger of injury. 	 p.3-1
 Be sure not to select retry mode for up and down equipment or traveling equipment, because there is output free-running mode in term of retry. Otherwise, there is a danger of injury and/or machine breakage. 	 p.3-1
• Even if the power supply is cut for a short period of time, it may restart operation after the power supply is recovered if the operation command is given. If it may incur danger to personnel, be sure to make a circuit so that it will not restart after power recovery. Otherwise, there is a danger of injury.	 p.3-1
 The Stop Key is effective only when the function is set. Be sure to prepare the Key separately from the emergency stop. Otherwise, there is a danger of injury. 	 p.3-1
 After the operation command is given, if the alarm reset is conducted, it will restart suddenly. Be sure to set the alarm reset after checking the operation command is off. Otherwise, there is a danger of injury. 	 p.3-1
 Be sure not to touch the inside of the energized inverter or to put a bar into it. Otherwise, there is a danger of electric shock and/or fire. 	 p.3-1

 Cooling fin will have high temperature. Be sure not to touch them. Otherwise, there is a danger of getting burned. 	 p.3-2
 Low to high speed operation of the inverter can be easily set. Be sure to operate it after checking the tolerance of the motor and machine. Otherwise, there is a danger of injury. 	 p.3-2
 Install external break system if needed. Otherwise, there is a danger of injury. 	 p.3-2
 If a motor is operated at a frequency higher than standard setting value(50Hz/60Hz), be sure to check the speeds of the motor and the machine with each manufacturer, and after getting their consent, operate them. Otherwise, there is a danger of machine breakage. 	 p.3-2
 Check the following before and during the test run. Otherwise, there is a danger of machine breakage. Was the direction of the motor correct? Was the inverter tripped during acceleration or deceleration? Were the rpm and frequency meter correct? Were there any abnormal motor vibrations or noise? 	 p.3-2

4. Maintenance, inspection and part replacement

 After a lapse of more than 10 minutes after turning off the input power supply, perform the maintenance and inspection. Otherwise, there is a danger of electric shock. 	 p.5-1
 Make sure that only qualified persons will perform maintenance, inspection and part replacement. (Before starting the work, remove metallic objects from your person (wristwatch, bracelet, etc.) (Be sure to use tools protected with insulation.) Otherwise, there is a danger of electric shock and/or injury. 	 p.5-1

5.Others

• Never modify the unit. Otherwise, there is a danger of electric shock and/or injury.

TABLE OF CONTENTS

Chapter 1 General Descriptions

1.1 Inspection upon Unpacking	1-1
Inspection of the unit	1-1
Instruction manual	1-1
1.2 Question and Warranty of the Unit	1-2
Request upon asking	1-2
Warranty for the unit	1-2
1.3 Appearance	1-3
Appearance and Names of Parts	1-3

Chapter 2 Installation and Wiring

2.1 Installation	2-1
2.1.1 Installation	2-2
2.1.2 Blind cover of wiring parts	2-4
2.2 Wiring	2-5
2.2.1 Terminal Connection Diagram	2-6
2.2.2 Main circuit wiring	2-8
2.2.3 Terminal Connection Diagram	
2.2.4 Digital operator wiring	

Chapter 3 Operation

3.1 Operation	3-3
3.2 Test Run	3-4

Chapter 4 Explanation of Function

4.1 About Digital Operator (OPE-S) 4-2
4.2 Code list
4.3 Explanation of function 4-13
4.3.1 Monitor mode
Output frequency monitor, Output current monitor, Operation direction monitor
Intelligent input monitor, Intelligent output monitor4-14
Frequency conversion monitor, Output torque monitor, Output voltage monitor,
Input electric power monitor
Accumulated time monitor on Run, Power ON time monitor, Trip time monitor, Trip monitor 4-16

4.3.2 Function mode

Output frequency setting, Operation direction, Selection with limits of operation direction,	
Frequency command selection 4-	17
Operation command selection, Selection on stop, Selection of stop key 4-	18
Adjustable time 4-	19
Base frequency 4-2	20
Maximum frequency, Carrier frequency, External analog input (0,02,01) 4-2	21
Input frequency Start / End 4-2	23
Setting analog input filter, Output voltage gain 4-2	24
Control system (V/f Characteristic) 4-2	25
Torque boost 4-2	27
Direct current braking (DB) 4-2	28
Frequency limiter4-	31
Frequency jump function, Acceleration stop function 4-3	32
Two-stage acceleration and deceleration on function (2CH) 4-3	33
Acceleration and deceleration pattern 4-	34
Instantaneous power failure / under-voltage 4-	35
Open phase protection function selection, Electronic thermal function	37
Overload restriction / Overload advance notice 4-	39
Start frequency, Reduced voltage start selection 4-4	41
BRD (Dynamic breaking) function, Cooling fan operating selection	42
Intelligent input terminal setting 4-4	43
Input terminal a/b (NO / NC) selection, Multi-speed operation function 4-4	44
Second / Fifth control function (SET0,SET1, SET2) 4-4	46
Software lock mode selection (SFT), Force operation ope function (OPE) 4-4	47
Free-run stop (FRS)4-4	48
Reset (RS) 4-4	49
Unattended start protection (USP), UP / DOWN selection (UP, DWN, UDC) 4-	50
External trip (EXT), 3 Wire input function (STA, STP, F/R)	51
Intelligent output terminal setting, Intelligent output terminal a/b (NO / NC) selection 4-	52
Signal during run (RUN) 4-	53
Frequency arrival signal (FA1, FA2, FA3, FA4, FA5)4-	54
RUN time / power ON time over (RNT / ONT) 4-	55
Alarm code output (AC0-AC3) 4-	56
FM terminal4-	57
AM terminal, AMI terminal, External thermistor 4-	58
Initialization setting 4-	59
Display selection	60

Table of Contents

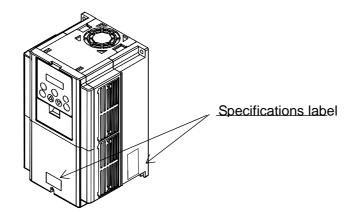
Motor constant, Stabilized factor, Operator selection on option error	4-61
Communication function	
4.4 Protection function list	4-75
4.4.1 Protection function	
4.4.2 Trip monitor display	
4.4.3 Warning Monitor display	

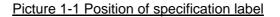
Chapter 5 Maintenance, Inspection

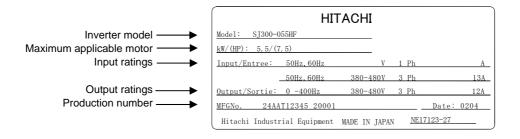
5.1 Precaution for Maintenance/Inspection	5-1
5.1.1 Daily inspection	5-1
5.1.2 Cleaning	5-1
5.1.3 Regular inspection	5-1
5.2 Daily inspection and regular inspection	5-2
5.3 Megger test	5-3
5.4 Withstand Voltage test	5-3
5.5 The method to check Inverter, converter part	5-4
5.6 Capacitor Life Curve	5-5

Chapter 6 Specification

6.1 Standard specification list	. 6-1
6.2 Dimension	. 6-2


1.1 Inspection upon Unpacking


1.1.1 Inspection of the unit


Open the package and pick out the inverter, please check the following item.

If you discover any unknown parts or the unit is in bad condition, please contact your supplier or the local Hitachi Distributor.

- (1) Make sure that there was no damage (injury, falling or dents in the body) during transportation of the unit.
- (2) After unpacking the unit, make sure that the package contains one operation manual for the Inverter.
- (3) Make sure that the product is the one you ordered by checking the specification label.

Picture 1-2 Contents of specifications label

1.1.2 Instruction manual

This instruction manual is the manual for the HITACHI Inverter SJH300 Series.

Before operation of the Inverter, read the manual carefully. After Reading this manual, keep it to hand for future reference.

When using optional units for this inverter; please refer to the instruction manuals packed with the optional units.

This instruction manual should be delivered to the end user.

1.2 Question and Warranty of the Unit

1.2.1 Request upon asking

If you have any questions regarding damage to the unit, unknown parts or for general enquiries please contact your supplier or the local Hitachi Distributor with the following information.

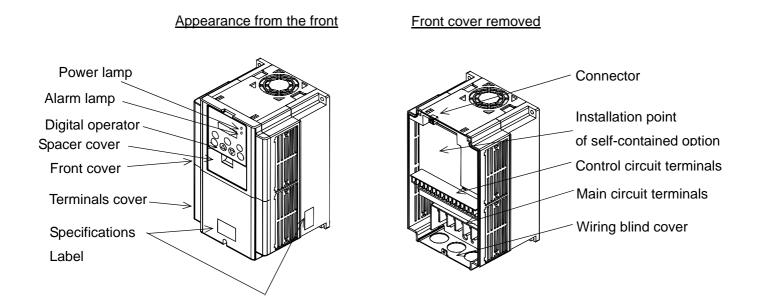
- (1) Inverter Model
- (2) Production Number (MFG No.)
- (3) Date of Purchase
- (4) Reason for Calling

Damaged part and its condition etc.

Unknown parts and their contents etc.

1.2.2 Warranty for the unit

The warranty period of the unit is one year after the purchase date. However within the warranty period, the warranty will be void if the fault is due to;


- (1) Incorrect use as directed in this manual, or attempted repair by unauthorized personnel.
- (2) Any damage sustained other than from transportation (Which should be reported immediately).
- (3) Using the unit beyond the limits of the specification.
- (4) Natural Disasters: Earthquakes, Lightning, etc

The warranty is for the inverter only, any damage caused to other equipment by malfunction of the inverter is not covered by the warranty.

Any examination or repair after the warranty period (one-year) is not covered. And within the warranty period any repair and examination which results in information showing the fault was caused by any of the items mentioned above, the repair and examination cost are not covered. If you have any questions regarding the warranty please contact either your supplier or the local Hitachi Distributor. Please refer to the back cover for a list of the local Hitachi Distributors.

1.3 Appearance

1.3.1 Appearance and Names of Parts

(Note) When you use cable for remote operation, please remove connector

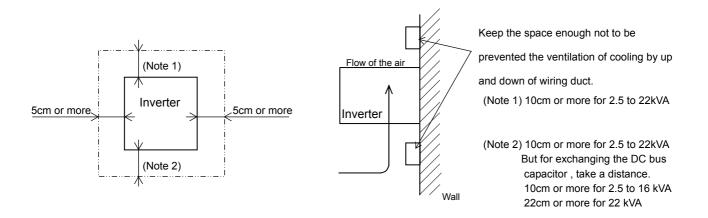
2.1 Installation

- Be sure to install the unit on flame resistant material such as metal. Otherwise, there is a danger of fire.
- Be sure not to place anything inflammable in the vicinity. Otherwise, there is a danger of fire.
- Do not carry unit by top cover, always carry by supporting base of unit. There is a risk of falling and injury.
- Be sure not to let the foreign matter enter such as cut wire refuse, spatter from welding, iron refuse, wire, dust, etc.

Otherwise, there is a danger of fire.

- Be sure to install it in a place which can bear the weight according to the specifications in the text. (Chapter 6. Specifications) Otherwise, it may fall and there is a danger of injury.
- Be sure to install the unit on a perpendicular wall which is not subject to vibration. Otherwise, it may fall and there is a danger of injury.
- Be sure not to install and operate an inverter which is damaged or parts of which are missing. Otherwise, there is a danger of injury.
- Be sure to install it in a room which is not exposed to direct sunlight and is well ventilated. Avoid environments which tend to be high in temperature, high in humidity or to have dew condensation, as well as places with dust, corrosive gas, explosive gas, inflammable gas, grinding-fluid mist, salt damage, etc. Otherwise, there is a danger of fire.

2.1.1 Installation


1. Transportation

This inverter has plastic parts. So handle with care.

Do not over tighten the wall mounting fixings as the mountings may crack, causing is a risk of falling. Do not install or operate the inverter if there appears to be damage or parts missing.

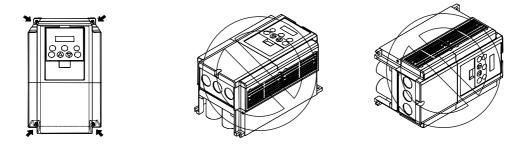
2. Surface for Mounting of Inverter

The temperature of the Inverter heatsink can become very high (the highest being about 150°C). The surface, which you are mounting the Inverter onto, must be made of a non-flammable material (i.e steel) due to the possible risk of fire. Attention should also be made to the air gap surrounding the Inverter. Especially when there is a heat source such as a breaking resistor or a reactor.

3. Operating Environment - Ambient Temperature

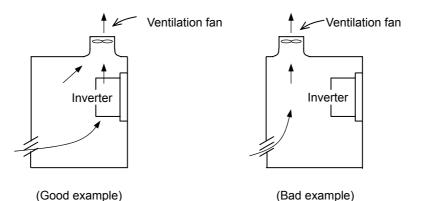
The ambient temperature surrounding the Inverter should not exceed the allowable temperature range (-10 to 50°C). The temperature should be measured in the air gap surrounding the Inverter, shown in the diagram above. If the temperature exceeds the allowable temperature, the component life will become shortened especially in the case of the Capacitors.

4. Operating Environment - Humidity


The humidity surrounding the Inverter should be within the limit of the allowable percentage range (20% to 90%). Under no circumstances should the Inverter be in an environment where there is the possibility of moisture entering the Inverter. Also avoid having the Inverter mounted in a place that is exposed to the direct sunlight.

5. Operating Environment - Air

Install the Inverter avoiding any place that has dust, corrosive gas, explosive gas, combustible gas, mist of coolant and sea damage.


6. Mounting Position

Mount the Inverter in a vertical position using screws or bolts. The surface you mount onto should also be free from vibration and can easily hold the weight of the Inverter.

7. Ventilation within an Enclosure

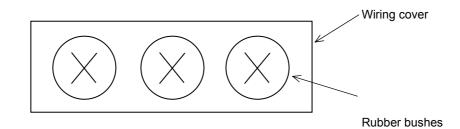
If you are installing one or more Inverters in an enclosure a ventilation fan should be installed. Below is a guide to the positioning of the fan to take the airflow into consideration. The positioning of Inverter, cooling fans and air intake is very important. If these positions are wrong, airflow around the Inverter decreases and the temperature surrounding the Inverter will rise. So please make sure that the temperature around is within the limit of the allowable range.

8.External cooling of Inverter

It is possible to install the inverter so that the heatsink is out of the back of the enclosure. This method has two advantages, cooling of the inverter is greatly increased and the size of the enclosure will be smaller.

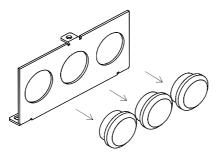
To install it with the heatsink out of the enclosure, a metal fitting option is required to ensure heat transfer.

Do not install in a place where water, oil mist, flour and dust etc can come in contact with the inverter as there are cooling fans fitted to the heatsink.


Inverter capacity (kVA)	2.5	3.5	5.5	8	11	16	22			
70% of rated output (W)	102	127	179	242	312	435	575			
100% of rated output (W)	125	160	235	325	425	600	800			
100% of rated efficiency(%)	92.3	93.2	94.0	94.4	94.6	94.8	94.9			

9. Approximate loss for each capacity

2.1.2 Blind cover of wiring parts (2.5 to 22kVA)


(1) Cable entry through Rubber Bushes

The wiring should be done after making a cut in the rubber bushes with nippers or cutters.

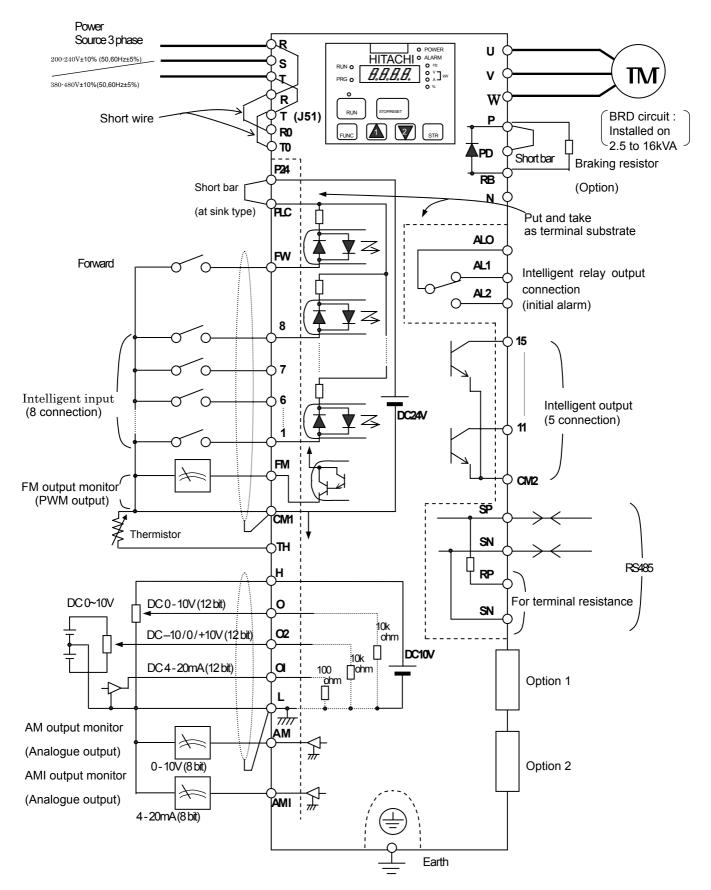
(2) Cable entry through Conduit

After taking out the rubber bushes, connect the conduit.

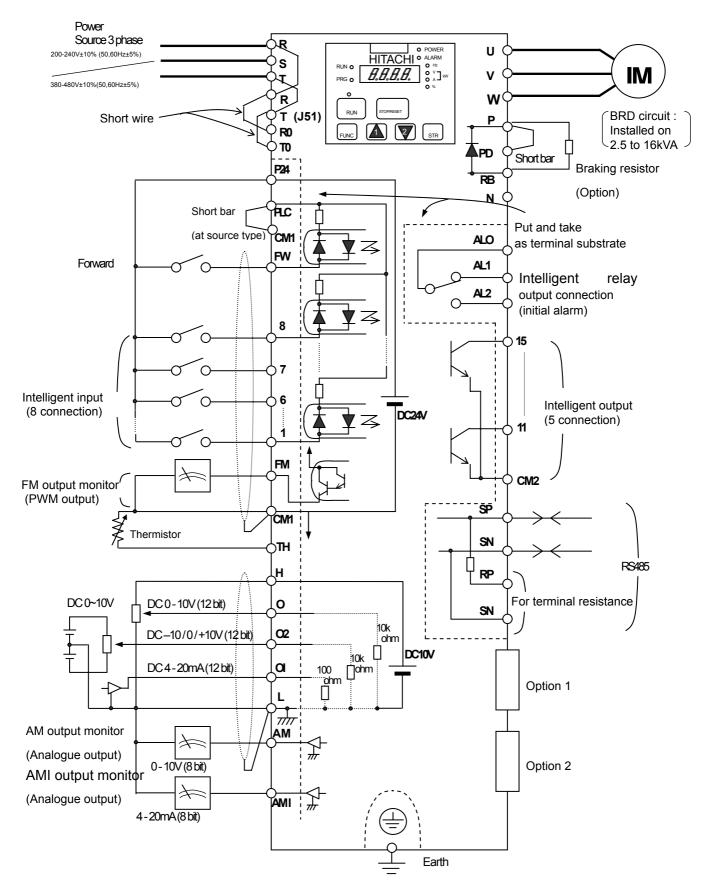
(Note) Except for when connecting conduit, do not take out the rubber bushes. It is possible that the wiring insulation is broken and a possible earth fault is caused.

2.2 Wiring

- Be sure to ground the unit. Otherwise, there is a danger of electric shock and/or fire.
- Wiring work shall be carried out by electrical experts. Otherwise, there is a danger of electric shock and/or fire.
- Implement wiring after checking that the power supply is off. It might incur electric shock and/or fire.
- After installing the main body, carry out wiring. Otherwise, there is a danger of electric shock and/or injury.
- Do not remove the rubber bush. (2.5 to 22kVA) Due to the possibility that a wire may be damaged, shorted or may have a ground fault with the edge of the wiring cover.



- Make sure that the input voltage is: Three phase 200 to 240V 50/60Hz (for models with suffix L) Three phase 380 to 480V 50/60Hz (for models with suffix H)
- Be sure not to input a single phase. Otherwise, there is a danger of fire.
- Be sure not to connect AC power supply to the output terminals(U, V, W). Otherwise, there is a danger of injury and/or fire.
- Be sure not to connect the resistor to DC terminals (PD,P and N) directly. Otherwise, there is a danger of fire.
- Be sure to set the earth leakage breaker or the fuse(s) (the same phase as the main power supply) in the operation circuit. Otherwise, there is a danger of fire.
- As for motor leads, earth leakage breakers and electromagnetic contactors, be sure to use the equivalent ones with the specified capacity (rated).
 Otherwise, there is a danger of fire.
- Do not stop operation by switching off the electromagnetic contactors on the primary or secondary sides of the inverter.


Otherwise, there is a danger of injury and/or machine breakage.

• Fasten the screws with the specified fastening torque. Check so that there is no loosening of screws. Otherwise, there is a danger of fire.

2.2.1 Terminal Connection Diagram (sink type)

2.2.1 Terminal Connection Diagram (source type)

(1) Explanation of main circuit terminals

Symbol	Terminal Name	Explanation of contents
R, S, T (L1,L2,L3)	Main power	Connect alternating power supply. When using regenerative converter and HS900 series, don't connect.
U, V, W (T1,T2,T3)	Inverter output	Connect three-phase motor.
PD, P (+1,+)	D.C. reactor	Remove the short bar between PD and P, connect optional Power factor reactor (DCL-XX).
P, RB (+,RB)	External braking resistor	Connect optional External braking resistor. (Installed on 2.5kVA to 16kVA)
P, N (+,-)	External Regenerative unit	Connect optional Regenerative braking unit (BRD-XX).
G 🖨	Inverter earth terminals	It is earth terminals of inverter case.

(2) Explanation of control circuit terminal

		Symb	ol	Terminal Name	Explanation of contents								
		Power Source	L	Analogue power common	It is common terminal of frequency command signal (O, O2, OI) and analog	gue output, AM, AMI. Don't earth.							
		гŏ	н	Frequency power	It is the DC+10V power for terminals.	Allowable load current 20mA							
			0	Frequency command power terminal (voltage)	When inputting DC 0 - 10V, it is maximum frequency on 10V. When maximum frequency is expected to be on being less than 10V, set with A014.	Input Impedance 10k ohm Allowable maximum voltage 12V							
Analogue		Frequency setting	O2	Frequency command support (voltage)	When inputting DC 0 - +-10V, this signal is added to frequency command of O or OI terminal.	Input Impedance 10k ohm Allowable maximum load current 20mA							
A		Free	OI	Frequency command Terminal (current)	When inputting DC4 - 20mA, 20mA is maximum frequency. When only At terminal is ON, this input signal is effective.	Input Impedance 100 ohm Allowable maximum current 24mA							
			AM	Digital monitor (voltage)	Output one selected from monitor item, output frequency, output	Allowable maximum current 2mA							
		Monitor	AMI	Analogue monitor (current)	current, torque, output voltage, input electric power, electric thermal rate, LAD frequency	Allowable output less than Impedance 250 ohm							
		W	FM	Digital monitor (voltage)	Output the output frequency with digital besides above monitor.	Allowable maximum current 1.2mA Maximum frequency 3.6kHz							
		rce	P24	Interface power	Allowable maximum output current 100mA								
		CM1 Interface power common			The common terminal is FW terminal, 1 - 8 terminal, TH terminal, FM terminal, Don't earth.								
		PLC Intelligent input			Change sink type and source type by short bar on control terminals. P24-PLC : Sink type CM1-PLC :Source type								
ction)		Setting	FW	Forward command	About FW signal, ON is Forward and OFF is stop command.	Allowable maximum voltage 27V Input ON condition of terminal							
Digital (connection)	Input signal	Uperation/ Function Selection etc Si			Select 8 functions from 44 functions, and divide between 1 terminal and 8 terminals.	Voltage Over 18V Input OFF condition of terminal voltage Under 3V Input impedance 4.7k ohm							
	Output signal	11 E 12		Intelligent output	Select 5 functions from 22 functions, and divide between 1 terminal and 5 terminals	Allowable maximum voltage 27V current 50mA							
	AL1 Alarm output O O AL2 terminal			Assign output function. Output is c contact.	Allowable maximum AC250V,0.2A								
				Common terminal	It is common terminal of alarm output terminal	Allowable minimum AC100V,10mA							
Analogue	ັດ TH Thermistor input terminal				When a Thermistor is connected to terminals TH and CM1, the Inverter checks for over-temperature and will cause trip event and turn off output to motor.	Allowable minimum Thermistor Power 100mW							

2.2.2 Main circuit wiring

(1) Warning on wiring

When carrying out work on the Inverter wiring make sure to wait for at least ten minutes before you remove the cover. Making sure to check that the charge lamp is not illuminated.

A final check should always be made with a voltage meter.

After removing the power supply, there is a time delay before the capacitors will dissipate their charge.

1. Main power terminals(R, S, T)

Connect the main power terminals (R, S, and T) to the power supply through a electromagnetic contactor or an earth-leakage breaker.

We recommend connecting the electromagnetic contactor to the main power terminals. Because when the protective function of inverter operates, it isolates the powers supply and prevent the spread of damages and accidents.

This unit is for the three-phase power supply. It isn't for the single-phase power supply. If you require a single phase power supply unit, please contact us.

- Don't operate with on/off of the switch set up in the converter side and the inverter side. Do an operation stop by the operation order (FW/RV) terminals
- This inverter becomes the following condition at the time of open phase because open phase protection is being made ineffective by the early data.
- R phase or T phase, open phase condition: The power isn't turned on, and it doesn't operate.
 S phase, open phase condition : It becomes single-phase operation condition. Trip operation such as a deficiency voltage or over current may be done.

Don't use it under open phase condition.

• A converter module may be damaged in the case shown below. Be careful.

When an unbalance of the power supply voltage is more than 3%.

Power supply capacity, 10 times of the capacity of inverter or a case beyond 500kVA.

When a change in the rapid power supply voltage occur.

(Example) When inverter of the plural is installed with the common electric wire whose it is short by each other. When there is insertion of the condenser or a removal.

 On/off of the power supply isn't to do it more than three times in one minute. It has the possibility that inverter is damaged.

2. Inverter output terminals (U, V, and W)

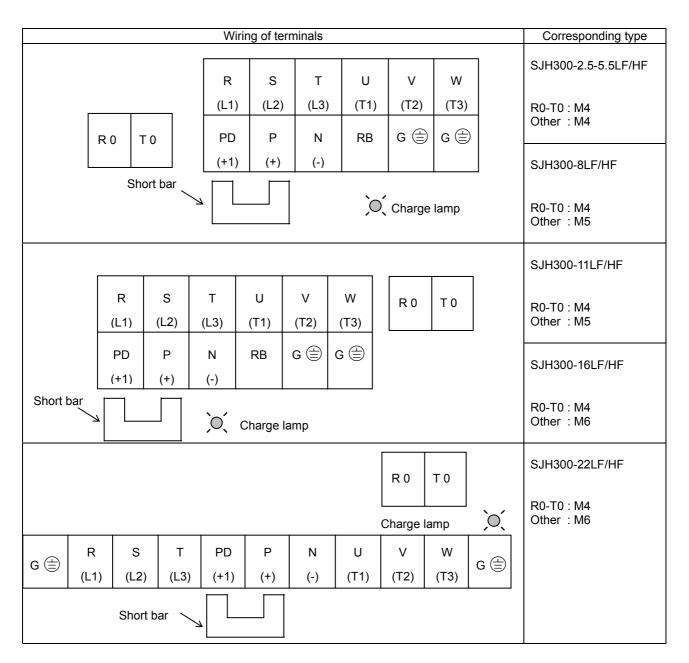
- Wire with thicker wire than the applicable wire to control the voltage drop. Particularly when outputting low frequencies, the torque of the motor will reduce by the voltage drop of the wire.
- Do not install power factor correction capacitors or a surge absorber to the output. The inverter will trip or sustain damage to the capacitors or the surge absorber.
- In the case of the cable length being more than 20 meters, it is possible that a surge voltage will be generated and damage to the motor is caused by the floating capacity or the inductance in the wire (400V especially).
 An EMC Mains Filter is available, please contact us.
- In the case of two or more motors, install a thermal relay to each motor.
- Make the RC value of the thermal relay the value of 1.1 times of motor rated electric current. Install output ACL when a life becomes short by the length of wiring.

- 3. Direct current reactor (DCL) connection terminals (PD, P)
- These are the terminals to connect the current reactor DCL (Option) to help improve the power factor.
- The short bar is connected to the terminals when shipped from the factory, if you are to connect a DCL you will need to disconnect the short bar first.
- When you don't use a DCL, don't disconnect the short bar.

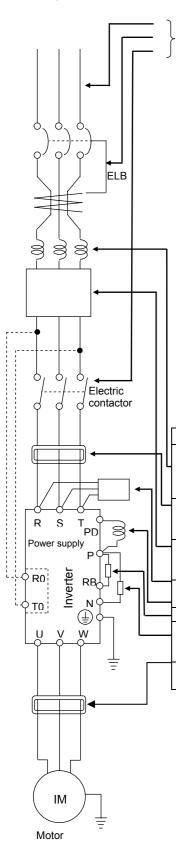
4. External braking resistor connection terminals (P, RB)

- The regenerative braking circuit (BRD) is built-in as standard up to the 11kW Inverter. When braking is required, install an external-braking resistor to these terminals.
- The cable length should be less than 5 meters, and twist the two connecting wires to reduce inductance.
- Don't connect any other device other than the external braking resistor to these terminals.
- When installing an external braking resistor make sure that the resistance is correctly rated to limit the current drawn through the BRD.

5. Regenerative breaking unit connection terminals (P, N)


- The Inverters rated more than 15kW don't contain a BRD circuit. If regenerative braking is required an external BRD circuit (Option) is required along with the resistor (Option).
- Connect external regenerative braking unit terminals (P, N) to terminals (P,N) on the inverter. The braking resistor is then wired into the External Braking unit and not directly to the Inverter.
- The cable length should be less than 5 meters, and twist the two connecting wires to reduce inductance.

6. Earth (G 😑)


- Make sure that you securely ground the Inverter and motor for prevention of electric shock.
- The inverter and motor must be connected to an appropriate safety earth and follow the local standard. Failure to do so constitutes an electrical shock hazard.

(2) Wiring of main circuit terminals

The wiring of main circuit terminals for inverter is the following picture.

(3) Wiring Equipment

Refer to "(4) Common applicable tools"

(Note 1) The applicable tools indicate for Hitachi standard four-pole squirrel-cage Motor.

(Note 2) Select applicable tools for breakers examining the capacity of breakers.

(Use Inverter type.)

(Note 3) Use earth-leakage breakers (ELB) for safety.

(Note 4) Use 60/75 °C copper electric wire.

(Note 5) It needs bigger wires for power lines, if the distance exceeds 20m.

(Note 6) Use 0.75mm² for Alarm output contact.

(Note 7) Separate by the sum wiring distance from Inverter to power supply, from inverter to motor for the sensitive current of leak breaker (ELB).

Wiring distance	Sensitive Current(mA)
100m and less	50
300m and less	100

(Note 8) When using CV wire and wiring by rigid metal conduit, leak flows.

(Note 9) IV wire is high dielectric constant. So the current increase 8 times.

Therefore, use the sensitive current 8 times as large as that of the left list. And if the distance of wire is over 100m, use CV wire.

Name	Function
Input reactor(harmonic control, electrical coordination, power-factor improvement)(ALI-***)	This part is used when the unbalance voltage rate is 3% or more and power supply is 500 kVA or more, and there is a rapid change in the power supply. It also improves the power factor.
Radio noise filter (zero-phase reactor) (ZCL-***,FC-**)	Using the inverter may cause noise on the peripheral radio through the power lines. This part reduces noise.
Noise filter for Inverter (NF-***)	This part reduces common noise generated between the power supply and the ground, as well as normal noise. Put it in the primary side of inverter.
Input radio noise filter (capacitor filter)(CFI-*)	This part reduces radiation noise emitted from wire at the input.
Direct reactor(DCL-*-**)	This part control harmonic from inverter.
Breaking resistor Regenerative breaking unit	This part is used for applications that need to increase the brake torque of the inverter or to frequently turn on and off and to run high inertia load.
Radio noise filter(zero-phase reactor)(ZCL-***)	This part reduces noise generated at the output of the inverter. (It is possible to use for both input and output.)

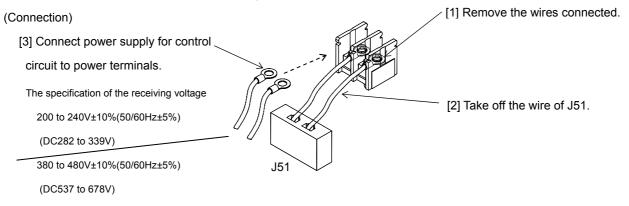
(4) Common applicable tools

		_					External					Applicable tools								
	Applicable Inverter model	Powe R,S,٦ W,P,I	r,u,v,	E	Earth line G	e	resi betv	ster veen d RB	Screw size of	screw size of Terminal		Terminal	Terminal				Tightning Torque max	Leak breaker	Circuit breaker or	Electro-m agnetic Controller
	moder	mm ² or more	AWG or more	mm ² or more	AWG or more	AWG or more (#1)	mm ²	AWG	terminal		(N•m)	(ELB)	fuse	(MC)						
	SJH300-2.5LF	2	14	1.25	16	14	2	14	M4	2-4	1.5	EX30(15A)	10A	H10C						
ss	SJH300-3.5LF	2	14	1.25	16	14	2	14	M4	2-4	1.5	EX30(20A)	15A	H20						
σ	SJH300-5.5LF	3.5	10	3.5	10	12	3.5	10	M4	3.5-4	1.5	EX30(30A)	20A	H20						
/ cl	SJH300-8LF	5.5	8	5.5	8	10	5.5	8	M5	5.5-5	2.5	EX50B(50A)	30A	H25						
200	SJH300-11LF	8	6	8	8	10	5.5	8	M5	8-5	2.5	EX60B(60A)	40A	H35						
20	SJH300-16LF	14	4	14	4	10	5.5	8	M6	14-6	4.9	RX100(75A)	60A	H50						
	SJH300-22LF	22	2	22	3	8	-	-	M6	22-6	4.9	RX100(100A)	80A	H65						
	SJH300-2.5HF	2	18	1.25	16	14	2	18	M4	2-4	1.5	EX30(10A)	10A	H10C						
ss	SJH300-3.5HF	2	16	1.25	16	14	2	16	M4	2-4	1.5	EX30(10A)	10A	H10C						
clas	SJH300-5.5HF	2	14	1.25	16	14	2	14	M4	2-4	1.5	EX30(15A)	15A	H20						
-	SJH300-8HF	2	12	2	14	14	2	12	M5	2-5	2.5	EX50C(30A)	15A	H20						
200	SJH300-11HF	3.5	10	3.5	10	12	3.5	10	M5	3.5-5	2.5	EX50C(30A)	20A	H20						
4	SJH300-16HF	5.5	8	5.5	8	10	5.5	8	M6	5.5-6	4.9	EX50C(50A)	30A	H25						
	SJH300-22HF	8	6	8	8	10	-	-	M6	8-6	4.9	EX60B(60A)	40A	H35						

#1 Conformity to the UL

(Note) Field wiring must be made by an UL-listed and CSA-certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed by using the crimping tool specified by the connector manufacture or equivalent wording included in the manual.

Use suitable circuit breaker or fuse listed in this manual for UL's listing purpose. Otherwise, there is a danger of fire.

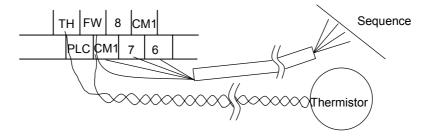

5) Connecting power to the control circuit, separating from main power

When the protection circuit of inverter is activated and the electromagnetic contactor on the input supply to the inverter isolates the power supply, the control circuit power supply from the inverter will also switch off and the alarm output signal will not be hold.

The power terminals R0 and T0 are designed to allow a supply to go direct to the control circuit and therefore keep the alarm output signal on.

In this case, please connect power terminals R0 and T0, to the primary side of the electromagnetic contactor.

(inverter unit side of ACL, EMI filter, on using input ACL, EMI filter).



When you wire the control circuit power source (R0-T0) and the main circuit power source (R,S,T) separately. Please connect the 3A fuse to the power source electric wire, which is for the control circuit.

2.2.3 Terminal Connection Diagram

(1) Wiring

- Both the CM1 and L terminal is insulated to both the common terminal of the input and output signals.
 Do not short or earth these common terminals.
- Use twisted screened cable, for the input and output wires of the control circuit terminals. Connect the screen to the common terminal. The recommended wire gauge for all wiring to the logic connector is 28 AWG(0.75 mm²).
- Limit connection wires to 20m. When it is necessary to wire over 20m, use a VX applied controller RCD-A (Remoter operation bar) or a CVD-E (Insulated signal transducer).
- 4. Separate the control circuit wiring from the main power and relay control wiring.
- 5. If control and power wires must cross make sure they cross at 90 degrees to each other.
- When connecting a thermistor to the TH and CM1 terminal, twist the thermistor cables separate from the rests. Limit connection wires to 20m.

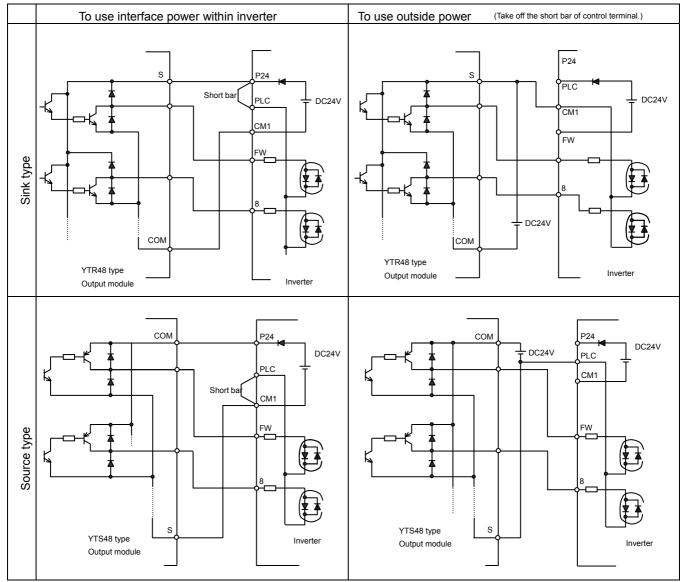
- 7. When using relays for the FW terminal or an intelligent input terminal use a control relay as they are designed to work with 24Vdc.
- 8. When the relay is used as an intelligent output, connect a diode for surge protection parallel to the coil.
- Do not short the analogue voltage terminals H and L or the internal power terminals PV24 and CM1. There is risk of Inverter damage.

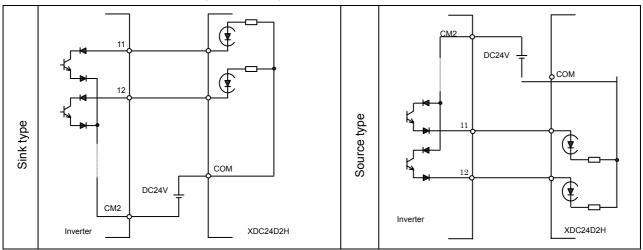
(2) Layout of control circuit terminals

	н	02	AM	FM	TH	FW	8	СМ	11	5	3	1	1	4 ·	13	11	AL	1
L	C) 0	A I	MI P2	24 PL	.c ci	VI1	7	6	4		2	15	CM2	1	2	AL0	AL2

The terminal screw size; M3

(3)Change of input logic type


The logic type of intelligent input terminals is written following list (Factory Default).


SJH300 – xxx LF / HF Sink type

The input logic type can be changed by changing the Short bar connection of control terminal.

Sink type	Between P24 and PLC on the control terminal.
Source type	Between PLC and CM1 on the control terminal.

(4) The connection to the input programmable logic controller (sequencer)

(5) The connection to the output programmable logic controller (sequencer)

2.2.4 Digital operator wiring

For operating this inverter, it can use digital operator OPE-SR, OPE-SRE, OPE-S, SRW-0J and SRW-0EX. For remote operating, put off digital operator from inverter and use connector cable ICS-1(1m) or ICS-3(3m).

(Note 1) When using connector cable, be sure to use less than 3m length. Otherwise, there is a danger of malfunction. (Note 2) In case of remote operating with connector cable, the inverter does not conform to EMC.

Chapter 3 Operation

- Be sure not to touch the main terminal or to check the signal or put on/off wire and/or connector. Otherwise, there is a danger of electric shock.
- Be sure to turn on the input power supply after closing the front cover. While being energized, be sure not to open the front cover. Otherwise, there is a danger of electric shock.
- Be sure not to operate the switches with wet hands. Otherwise, there is a danger of electric shock.
- While the inverter is energized, be sure not to touch the inverter terminals even during stoppage. Otherwise, there is a danger of electric shock.
- If the retry mode is selected, it may suddenly restart during the trip stop. Be sure not to approach the machine. (Be sure to design the machine so that personnel safety will be secured even if it restarts.) Otherwise, there is a danger of injury.
- Be sure not to select retry mode for up and down equipment or traveling equipment, because there is output free-running mode in term of retry. Otherwise, there is a danger of injury and/or machine breakage.
- Even if the power supply is cut for a short period of time, it may restart operation after the power supply is recovered if the operation command is given. If it may incur danger to personnel, be sure to make a circuit so that it will not restart after power recovery. Otherwise, there is a danger of injury.
- The Stop Key is effective only when the function is set. Be sure to prepare the Key separately from the emergency stop. Otherwise, there is a danger of injury.
- After the operation command is given, if the alarm reset is conducted, it will restart suddenly. Be sure to set the alarm reset after checking the operation command is off. Otherwise, there is a danger of injury.
- Be sure not to touch the inside of the energized inverter or to put a bar into it. Otherwise, there is a danger of electric shock and/or fire.

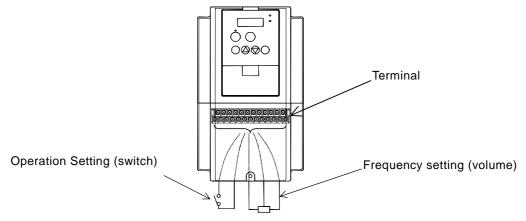
Chapter 3 Operation

 Cooling fin will have high temperature. Be sure not to touch them. Otherwise, there is a danger of getting burned.
• Low to high speed operation of the inverter can be easily set. Be sure to operate it after checking the tolerance
of the motor and machine. Otherwise, there is a danger of injury.
 Install external break system if needed. Otherwise, there is a danger of injury.
 If a motor is operated at a frequency higher than standard setting value(50Hz/60Hz), be sure to check the speeds of the motor and the machine with each manufacturer, and after getting their consent, operate them. Otherwise, there is a danger of machine breakage.
Check the following before and during the test run.
Otherwise, there is a danger of machine breakage.
Was the direction of the motor correct?
Was the inverter tripped during acceleration or deceleration?
Were the rpm and frequency meter correct? Were there any abnormal motor vibrations or noise?

3.1 Operation

This inverter requires two different signals in order for the Inverter to operate correctly. The Inverter requires both an operation setting and a frequency setting.

The following indicates the details of each method of operation and the necessary instructions for operation.

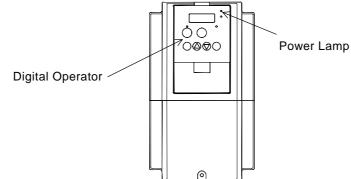

(1) Operation setting and a frequency setting by the terminal control.

This is the method by connecting signals from the outside (the frequency setting, the starting switch etc.) with the control circuit terminals.

The operation is started when the operation setting (FW, RV) is turned ON while the input power is turned ON. (Note) The methods of the setting frequency with terminal are the voltage setting and the electric setting.

And they are selective by each system. The control circuit terminal list shows this in detail. (Necessary things for operation)

- [1] The operation setting: switch, relay etc.
- [2] The frequency setting: signals from volume or external (DC0-10V, DC-10-10V, 4-20mA etc.)

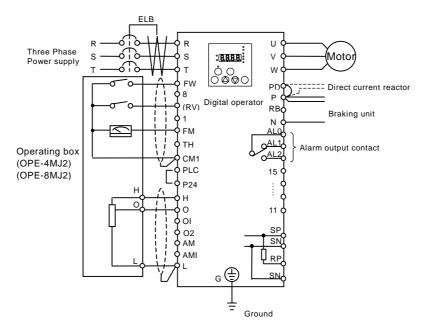

(2) Operation setting and frequency setting with the digital operator.

This is the method for operation from the digital operator, which comes equipped with the inverter as standard, or the remote operator (SRW) keypad.

When the digital operator sets the operation, the terminals (FW, RV) don't need to be linked.

And it is possible to select frequency from the digital operator as a method of the frequency setting too. (Necessary things for operation)

[1] Remote Operator (SRW) (It's unnecessary in case of digital operator operation)



(3) Operation setting and frequency setting from both digital operator and terminal operator This is the method of inverter operating from both of the above two operating methods It is possible that the operation setting and the frequency setting can be selected for both the digital operator and the terminal operator each separately.

3.2 Test Run

This is the common connection example. Please refer to 4.1 Digital Operator, for the detailed use of the digital operator (OPE-S).

(1) To input the operation setting and the frequency setting from terminal control.

(Arrangements)

- [1] Please make sure that the connections are correctly secure.
- [2] Turn the ELB ON to supply power to the inverter.

(The red LED "POWER" on the digital operator should illuminate.)

[3] Set terminal with the frequency setting selection.

Set A001 as indication code, press the (FUNC) key once. (Two figures are shown.)

Set 01 with the 1 key or the 2 key, press the str key once to set the frequency setting for terminal. (Indication code turns back to A001.)

[4] Set terminal with the operation setting selection.

Set A002 as indication code, press the (FUNC) key once. (Two figures are shown.)

Set 01 with the 1 key or the 2 key; press the 3 key once to set the operation setting for terminal. (Indication code turns back to A002.)

[5] Set monitor mode.

When monitoring the output frequency, set indication code to d001, and press the	
Or when monitoring the operating direction, set indication code to d003, press the	key once.

[6] Input starting operation setting.

Turn ON between [FW] and [CM1] of terminal.

Impress voltage between [O] and [L] of terminal to start operation.

[7] Input ending operation setting.

Turn OFF between [FW] and [CM1] to stop slowly down.

(2) Operation setting and the frequency setting from the digital operator (Remote Operator (SRW) is also same use.)

(Arrangements)

- [1] Please make sure that there isn't matter about the connection.
- [2] Turn the ELB on to supply power to the inverter.

(The red LED "POWER" on the digital operator should illuminate.)

[3] Set operator with the frequency setting selection.

Set A001 as indication code, press the (FUNC) key once. (Two figures are shown.)

Set 02 with the 1 key or the 2 key, press the str key once to set the frequency setting for the operator.

(Indication code turns back to A001.)

[4] Set operator with the operation setting selection.

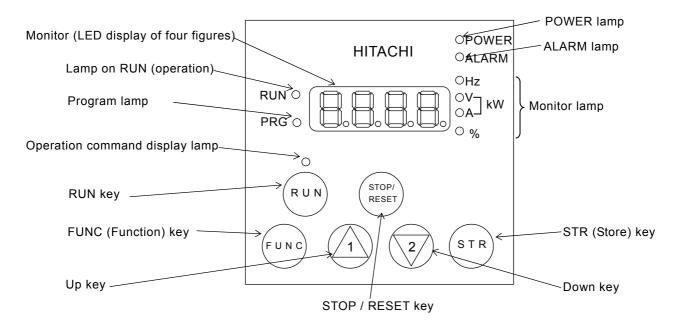
Set A002 as indication code, press the (FUNC) key once. (Two figures are shown.)

Set 02 with the key or the key, press the key once to set the operation setting for the operator.

(Indication code turns back to A002.)

Chapter 3 Operation
 [5] Set the output frequency Set F001 as indication code, as press the FUNC key once. (Indication code of four figures is shown.)
Set to the desired output frequency with the $$ key or the $$ key, press the $$ key once to store it. (Indication code turns back to F001.)
 [6] Set the operation direction. Set F004 as indication code, press the Funce key once. (00 or 01 is shown.)
Set operation direction to 00 in case of forward, or to 01 in case of reverse with the key or the key. Press the key once to establish it. (Indication code turns back to F004.)
[7] Set monitor mode.
When monitoring the output frequency, set indication code to d001, and press the $(FUNC)$ key once.
Or when monitoring the operation direction, set indication code to d003, press the $(FUNC)$ key once. (Indication code are forward, reverse or stop.)
[8] Press the RUN key to start operating.
(The green LED "RUN" turns on a light, and the indication changes in response to the monitor mode set.
[9] Press the key to decelerate to a stop.
(When the frequency turn back to 0, the green LED "RUN" light will switch off.)

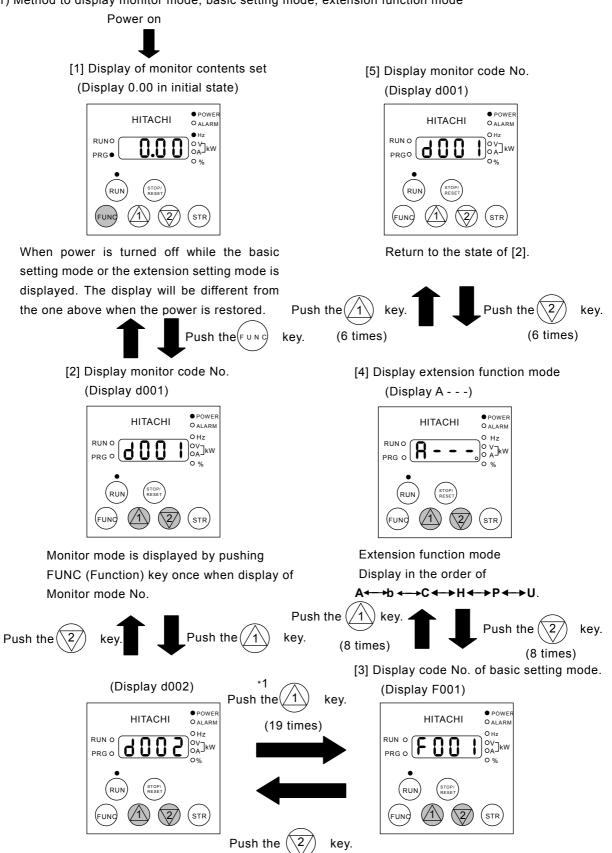
Make sure that the direction of the motor is correct. It is in danger of injury or machine damage. Make sure there is no abnormal noise and vibration. It is in danger of injury or machine damage.


Make sure that there is no tripping during the acceleration and deceleration and check that the revolution per minute and the frequency meter are correct.

When overcurrent tripping or overvoltage tripping occurs during the test run, increase the acceleration time or the deceleration time.

4.1 About Digital Operator (OPE-S)

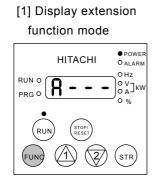
Explanation of operating the digital operator (OPE-S) SJH300 series operates by using the digital operator, which is fitted as standard.


1. Name and contents of each part of the digital operator

Name	Contents
Monitor	Display of frequency, output current and set value
Lamp on RUN (Operation)	Light on when the inverter is running
Program lamp	Light on when displaying set value of each function in monitor section Light will flash On and Off as a warning (when set value is incorrect)
POWER lamp	Power lamp of control circuit
ALARM lamp	Light on when the Inverter trips
Monitor lamp	Lamp display state of monitor section. Hz : Frequency V : Voltage A : Current kW : Electric power % : Rate
Operation command Display lamp	Light on only when operating command (RUN/STOP) is set in operator
RUN key	Run command to start the motor. But this is only valid when operation command is from the operator. (Be sure that the operation command display lamp is illuminated.)
STOP (STOP/RESET) key	This key is used to stop motor, or reset an alarm.
FUNC (Function) key	The key containing monitor mode, basic setting mode, extension functions mode.
STR (Store) key	The key to store the data set. (On changing set value, must be pushed or value is lost.)
UP/DOWN key	The keys to change extension function mode, function mode and set value.

...2. Operating method

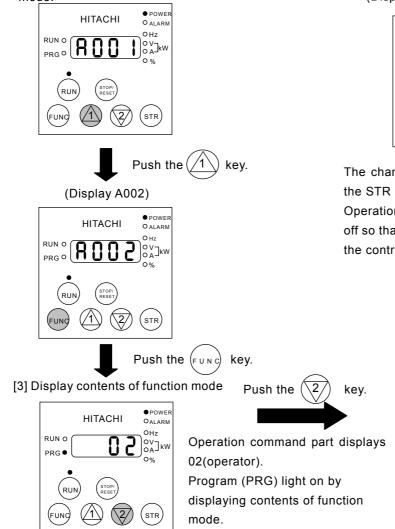
(1) Method to display monitor mode, basic setting mode, extension function mode

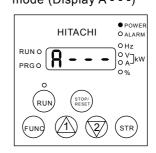


(Note1) Refer to (3)setting method of function code.

(19 times)

(2) Setting method of function


Change operation command part. (Operator ---- Control terminal)

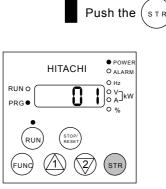

Make monitor display "A - - -" by referring to (1) displaying method.

Now operating command part is by the operator, so operating command display lamp should illuminate. Push the $(F \cup N C)$ key.

[2] Display code No. of function mode.

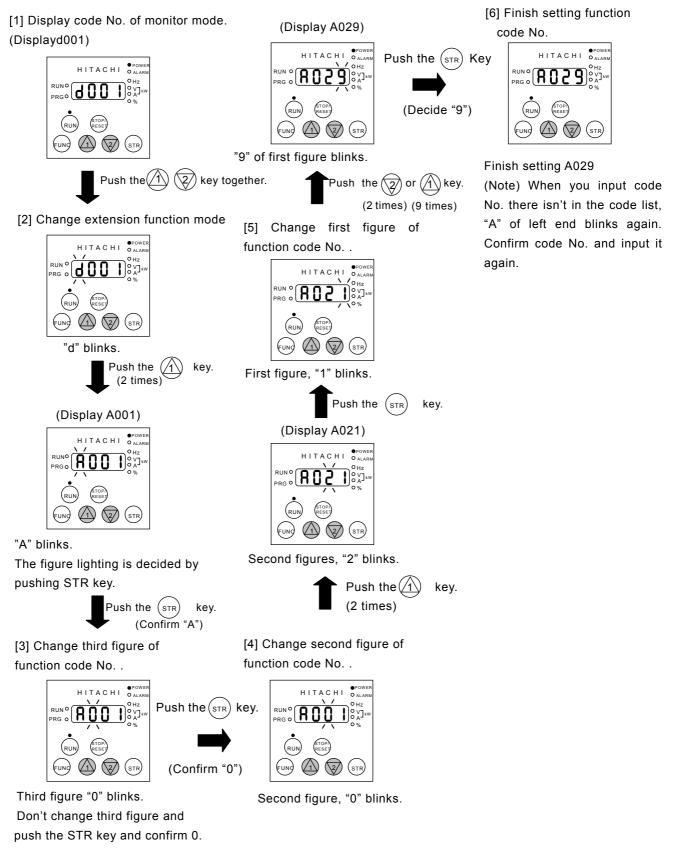
[5] Display extension function mode (Display A - - -)

It is possible to shift to other extension function modes, monitor modes and basic modes in this state.


[4] Display code No. of monitor mode.(Display A002)

The changed set value is confirmed by pushing the STR key.

Operation command display lamplight will switch off so that operation command is now changed to the control terminal.


key.

Change operation command part to control terminal 01.

(3) Setting method of function code

Code No. of monitor modes, basic setting modes and extension function codes can be set easily. Indicate the method to change code No.d001 of monitor mode to function code No. . A029 simply.

4.2 Code list

tor Mode				(Note 1)	
Function name	SJH300 monitor or data range (digital operator)	Initial data	Setting on running	Change mode during running	Page
monitor	0.00-99.99/100.0-1500.0(Hz)	-	-	-	4-13
monitor	0.0-999.9(A)	-	-	-	4-13
Operation direction monitor	F(forward)/o(stop)/r(reverse)	-	-	-	4-13
Intelligent input terminal monitor	FW (Example) FW, terminal 7,2,1: ON Terminal 8,6,5,4,3:OFF I </td <td>-</td> <td>-</td> <td>-</td> <td>4-14</td>	-	-	-	4-14
Intelligent output terminal monitor	(Example) Terminal 12,11:ON AL, 15,14,13:OFF AL 15 14 13 12 11	-	-	-	4-14
Frequency conversion monitor	0.00-99.99/100.0-999.9/1000. –9999. / 1000-3996	-	-	-	4-15
monitor	0.0-600.0 V	-	-	-	4-15
monitor	0.0-999.9 kW	-	-	-	4-15
Accumulated time monitor during RUN	09999./1000-9999// ⁻ 100- ^{,-} 999 h	-	-	-	4-16
Power ON time monitor	09999./1000-9999// 100-/ 999 h	-	-	-	4-16
Number of trip time monitor	09999./1000-6553(10000-530) (times)	-	-	-	4-16
Trip monitor 1		-	-	-	4-16
Trip monitor 2		-	-	-	4-16
Trip monitor 3	Trip Code, frequency(Hz), current(A),	-	-	-	4-16
	voltage(V),RUN time(h) power ON time(h)	-	-	-	4-16
		-	-	-	4-16
		-	-	-	4-16
display	Warning code	-	-	-	4-78
setting	(2 nd max. 5 th max. frequency)(Hz)	0.00	0	0	4-17
		30.00	0	0	4-19
2 nd acceleration time	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
3 rd acceleration time		30.00	0	0	4-19
	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
1 st deceleration time	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
3 rd deceleration time	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0		4-19
		30.00	0		4-19
	0.01-99.99/100.0-999.9/10003600.(s)	30.00	0	0	4-19
Operation direction selection	00(forward)/01(reverse)	00	×	×	4-17
	Function name Output frequency monitor Output current monitor Operation direction monitor Intelligent input terminal monitor Intelligent output terminal monitor Intelligent output terminal monitor Frequency conversion monitor Output voltage monitor Input electric power monitor Accumulated time monitor during RUN Power ON time monitor Number of trip time monitor Trip monitor 1 Trip monitor 2 Trip monitor 3 Trip monitor 4 Trip monitor 5 Trip monitor 5 Trip monitor 6 Warning monitor display Output frequency setting 1 st acceleration time 3 rd acceleration time 3 rd deceleration time 3 rd deceleration time 5 th deceleration time Operation direction	Function name SJH300 monitor or data range (digital operator) Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) Output current monitor 0.0-999.9(A) Operation direction monitor F(forward)/o(stop)/r(reverse) Intelligent input terminal monitor FW (Example) FW, terminal 7.2.1: ON Terminal 8.6.5.4.3: OFF Intelligent output terminal monitor FW (Example) Terminal 12.11:ON AL, 15, 14, 13: OFF Intelligent output terminal monitor Image: Conversion monitor (Example) Terminal 12.11:ON AL, 15, 14, 13: OFF Frequency conversion monitor 0.0-99.99.10009999./10009999./10009999./ 0.0-999.9 Output voltage monitor 0.0-999.9 KW Accumulated time monitor 09999./1000-9999/"100-"999 h Number of trip time monitor 09999./1000-9999/"100-"999 h Number of trip time monitor 09999./1000-6553(10000-530) (times) Trip monitor 3 Trip monitor 5 Trip monitor 5 Trip Code, frequency(Hz), current(A), voltage(V),RUN time(h) power ON time(h) 2 nd acceleration time 0.01-99.99/100.0-999.9/100.0-3600.(s) 2 nd acceleration time 0.01-99.99/100.0-999.9/100.0-3600.(s) 2 nd acceleration time 0.01-99.99/100.0-999.9/10003600.(s) <td>Function name SJH300 monitor or data range (digital operator) Initial data Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - Output current monitor 0.0-999.9(A) - Output current monitor 0.0-999.9(A) - Operation direction monitor F(forward)/o(stop)/r(reverse) - Intelligent input terminal monitor FW Terminal 8,6,5,4,3:OFF - Intelligent output terminal monitor - (Example) Terminal 12,11:ON AL, 15,14,13:OFF - Frequency conversion monitor 0.0-999.99/100.0-999.9/10009999./ - - Output voltage monitor 0.0-999.99/100.0-999.9/10009999./ - - Input electric power monitor 0.0-999.9 - - - Power ON time monitor during RUN 09999./1000-9999/~100-/~999 h - - Trip monitor 1 Trip Code, frequency(HZ), current(A), - - Trip monitor 3 Trip Code, frequency(HZ), current(A), - - Trip monitor 4 voltage(V),RUN time(h) power ON time(h) - - Trip monitor 5 -</td> <td>Function name SJH300 monitor or data range (digital operator) Initial data Setting on running Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - - Output current monitor 0.0-999.9(A) - - Operation direction monitor F(forward)/o(stop)/r(reverse) - - Intelligent input terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent input terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor Image: F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor 0.00-99.99/r(100-999.9/r(100-9999./ (000-9999./ (000-9999./ (000-9999./ (000-9999./ (00</td> <td>Function name SJH300 monitor or data range (digital operator) Initial data Setting on running Change mode during running Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - - - - Output current monitor 0.0-999.9(A) - - - - - Output current monitor 0.0-999.9(A) - - - - - Operation direction monitor F(forward)/o(stop)/r(reverse) - - - - - Intelligent input terminal monitor FW (Example) FW, terminal 7.2.1: ON M - - - - Intelligent output terminal monitor Image of FB - - - - - Intelligent output terminal monitor Image of FB - - - - - - Intelligent output terminal monitor Image of FB - - - - - - - - - - - - - - - - - -</td>	Function name SJH300 monitor or data range (digital operator) Initial data Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - Output current monitor 0.0-999.9(A) - Output current monitor 0.0-999.9(A) - Operation direction monitor F(forward)/o(stop)/r(reverse) - Intelligent input terminal monitor FW Terminal 8,6,5,4,3:OFF - Intelligent output terminal monitor - (Example) Terminal 12,11:ON AL, 15,14,13:OFF - Frequency conversion monitor 0.0-999.99/100.0-999.9/10009999./ - - Output voltage monitor 0.0-999.99/100.0-999.9/10009999./ - - Input electric power monitor 0.0-999.9 - - - Power ON time monitor during RUN 09999./1000-9999/~100-/~999 h - - Trip monitor 1 Trip Code, frequency(HZ), current(A), - - Trip monitor 3 Trip Code, frequency(HZ), current(A), - - Trip monitor 4 voltage(V),RUN time(h) power ON time(h) - - Trip monitor 5 -	Function name SJH300 monitor or data range (digital operator) Initial data Setting on running Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - - Output current monitor 0.0-999.9(A) - - Operation direction monitor F(forward)/o(stop)/r(reverse) - - Intelligent input terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent input terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor Image: F(forward)/o(stop)/r(reverse) - - Intelligent output terminal monitor 0.00-99.99/r(100-999.9/r(100-9999./ (000-9999./ (000-9999./ (000-9999./ (000-9999./ (00	Function name SJH300 monitor or data range (digital operator) Initial data Setting on running Change mode during running Output frequency monitor 0.00-99.99/100.0-1500.0(Hz) - - - - Output current monitor 0.0-999.9(A) - - - - - Output current monitor 0.0-999.9(A) - - - - - Operation direction monitor F(forward)/o(stop)/r(reverse) - - - - - Intelligent input terminal monitor FW (Example) FW, terminal 7.2.1: ON M - - - - Intelligent output terminal monitor Image of FB - - - - - Intelligent output terminal monitor Image of FB - - - - - - Intelligent output terminal monitor Image of FB - - - - - - - - - - - - - - - - - -

(Note 1) Change mode during run by selection of b031 (software lock selection).

(Note) Do not forget to press "STR" key when you change the display.

Chapter 4 Explanation of

Function Mode

0	Code	Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
	A001	Frequency command selection	00(VR)(Note1)/01(terminal)/02(operator)/03(RS485) /04(option1)/05(option2)	02	×	×	F9	4-17
	A002	Operation command selection	01(terminal)/02(operator)/03(RS485) /04(option1)/05(option2)	02	×	×	F9	4-18
	A003	Base frequency, 1 st motor	30 Maximum. Frequency(Hz)	1000.	×	×	A62	4-20
ng	A203	Base frequency, 2 nd motor	30 2 nd Maximum. Frequency (Hz)	1000.	×	×	A62	4-20
Base setting	A303	Base frequency, 3 rd motor	30 3 rd Maximum. Frequency (Hz)	1000.	×	×	-	4-20
ses	A403	Base frequency, 4 th motor	30 4 th Maximum. Frequency (Hz)	1000.	×	×	-	4-20
Bas	A503	Base frequency, 5 th motor	30 5 th Maximum. Frequency (Hz)	1000.	×	×	-	4-20
	A004	Maximum frequency 1 st motor	30 1500. (Hz)	1000.	×	×	A63	4-21
	A204	Maximum frequency, 2 nd motor	30 1500. (Hz)	1000.	×	×	A63	4-21
	A304	Maximum frequency, 3 rd motor	30 1500. (Hz)	1000.	×	×	-	4-21
	A404	Maximum frequency, 4 th motor	30 1500. (Hz)	1000.	×	×	-	4-21
	A504	Maximum frequency, 5 th motor	30 1500. (Hz)	1000.	×	×	-	4-21
			00(Changing of O and OI with AT terminal)/					
6	A005	AT terminal selection	01(Changing of O and O2 with AT terminal)	00	×	×	-	4-21
Analog input setting	A006	02 selection	00(single)/01(auxiliary speed of O, OI) [no reversible] / 02(auxiliary speed of O, OI [reversible]	00	×	×	-	4-21
out	A011	0 start	0.00-99.99/100.0-999.9/10001500.0 (Hz)	0.00	×	0	A26	4-23
ing	A012	0 end	0.00-99.99/100.0-999.9/10001500.0 (Hz)	0.00	×	0	A27	4-23
alog	A013	0 start rate	0100.0 (%)	0.	×	0	-	4-23
Ane	A014	0 end rate	0100.0(%)	100.	×	0	-	4-23
	A015	0 start selection	00 (external starting frequency)/01(0Hz)	01	×	0	-	4-23
	A016	O, OI, O2 sampling	130.(times)	8.	×	0	-	4-24
	A019	Multi-speed selection	00(binary : range is to 16 stage speed with 4 terminals)/ 01(bit : range is to 8 stage speed with 7 terminals)	00	×	×	-	4-44
	A020	Multi-speed 0 1 st motor	0.00, starting frequency-maximum. Frequency(Hz)	0.00	0	0	0	4-44
	A220	Multi-speed 0 2 nd motor	0.00, starting frequency-2 nd maximum frequency(Hz)	0.00	0	0	0	4-44
6	A320	Multi-speed 0 3 rd motor	0.00, starting frequency-3 rd maximum frequency(Hz)	0.00	0	0	-	4-44
ttinç	A420	Multi-speed 0 4 th motor	0.00, starting frequency-4 th maximum. Frequency(Hz)	0.00	0	0	_	4-44
Multistage speed • jogging frequency setting	A420	Multi-speed 0 5 th motor	0.00, starting frequency-4 maximum. Frequency(Hz)	0.00	0	0	-	4-44
ncy	A021	Multi-speed 0 5 motor	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	- A12	4-44
ənt	A021	Multi-speed2	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	A12 A13	4-44
frec				0.00	0	0	A13 A14	4-44
ng	A023 A024	Multi-speed3 Multi-speed4	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	O(F-11)	4-44
oggi		•	0.00, starting frequency-maximum frequency(Hz)		0	0	⊖(F-11) ○(F-11)	4-44
• jó	A025	Multi-speed5	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	○(F-11) ○(F-11)	
eed	A026	Multi-speed6	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	○(F-11) ○(F-11)	4-44 4-44
spe	A027	Multi-speed7	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0		
age	A028	Multi-speed8	0.00, starting frequency-maximum frequency(Hz)	0.00			-	4-44
tiste	A029	Multi-speed9	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
٩ul	A030	Multi-speed10	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
~	A031	Multi-speed11	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
	A032	Multi-speed12	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
	A033	Multi-speed13	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
	A034	Multi-speed14	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
\vdash	A035	Multi-speed15	0.00, starting frequency-maximum frequency(Hz)	0.00	0	0	-	4-44
	A042	Manual torque boost, 1 st motor	0.0-20.0(%)	1.0	0	0	F8	4-27
	A242	Manual torque boost, 2 nd motor	0.0-20.0(%)	1.0	0	0	F8	4-27
1	A342	Manual torque boost, 3 rd motor	0.0-20.0(%)	1.0	0	0	-	4-27
	A442	Manual torque boost, 4 th motor	0.0-20.0(%)	1.0	0	0	-	4-27
	A542	Manual torque boost, 5 th motor	0.0-20.0(%)	1.0	0	0	-	4-27
	A043	Manual torque boost break point, 1 st motor	0.0-50.0(%)	5.0	0	0	-	4-27
stic	A243	Manual torque boost break point, 2 nd motor	0.0-50.0(%)	5.0	0	0	-	4-27
acteris	A343	Manual torque boost break point, 3 rd motor	0.0-50.0(%)	5.0	0	0	-	4-27
V/f characteristic	A443	Manual torque boost break point, 4 th motor	0.0-50.0(%)	5.0	0	0	-	4-27
	A543	Manual torque boost break point, 5 th motor	0.0-50.0(%)	5.0	0	0	-	4-27
	A044	1 st control	00/(VC)/01(VP1.7power)/02(free V/f setting)	00	×	×	A0	4-25
	A244	2 nd control	00/(VC)/01(VP1.7power)/02(free V/f setting)	00	×	×	A0	4-25
	A344	3 rd control	00/(VC)/01(VP1.7power)/02(free V/f setting)	00	×	×	-	4-25
1	A444	4 th control	00/(VC)/01(VP1.7power)/02(free V/r setting)	00	×	×		4-25
	A544	5 th control	00/(VC)/01(VP1.7power)/02(free V/r setting)	00	×	×	-	4-25
	A045	Output voltage gain	20 100.(%)	100.	0	Ô	_ ○(F-12)	4-23
L		etting is possible at the time of the C		100.	U U	Ŭ		

(Note1) Setting is possible at the time of the OPE-SR installation.

Function Mode

(Code	Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
	A051	DC braking selection	00(invalid)/01(valid)	00	×	0	○(F-12)	4-28
	A052	DC braking frequency	0.00-500.(Hz)	0.50	×	0	○(F-12)	4-28
ent	A053	DC braking late time	0.0 - 5.0(s)	0.0	×	0	○(F-12)	4-28
Direct current braking	A054	DC braking power	0 100.(%)	0.	×	0	○(F-12)	4-28
akic	A055	DC braking time	0.0 - 60.0(s)	0.0	×	0	○(F-12)	4-28
br	A056	DC braking edge/level selection	00(edge action)/01(level action)	01	×	0	○(F-12)	4-28
ō	A057	DC braking power (starting time)	0 100.(%)	0.	×	0	-	4-28
	A058	DC braking time(starting time)	0.00-60.0(s)	0.0	×	0	-	4-28
	A059	DC carrier frequency	0.5-10(kHz) Derating<0.5-10kHz> 0.00, 1 st frequency lower limiter-maximum frequency(Hz)	5.0	×	×	-	4-28
	A061	1 st frequency maximum limiter	0.00, 1 th frequency lower limiter-maximum frequency(Hz)	0.00	×		A05	4-31
	A261	2 nd frequency maximum limiter	0.00, 2 frequency lower limiter-2 setting maximum frequency(Hz) 0.00, 3 rd frequency lower limiter-3 rd setting maximum	0.00	×	0	-	4-31
lower limiter∙jump frequency	A361	3 rd frequency maximum limiter	frequency(Hz) 0.00, 4 th frequency lower limiter-4 th setting maximum	0.00	×	0	-	4-31
p freq	A461	4 th frequency maximum limiter 5 th frequency maximum limiter	frequency(Hz) 0.00, 5 th frequency lower limiter-5 th setting maximum	0.00	×	0	-	4-31
Ē	A561		frequency(Hz)	0.00	~	0	-	4-31
Ē	A062	1 st frequency minimum limiter	0.00, start frequency- frequency maximum (Hz)	0.00	×	0	A06	4-31
ite	A262	2 nd frequency minimum limiter	0.00, start frequency- 2 nd frequency maximum (Hz) 0.00, start frequency- 3 rd frequency maximum (Hz)	0.00	×	0	-	4-31
Ē	A362	3 rd frequency minimum limiter	0.00, start frequency- 3 rd frequency maximum (Hz)	0.00	×	0	-	4-31
ē	A462	4 th frequency minimum limiter	0.00, start frequency- 4 th frequency maximum (Hz)	0.00	×	0	-	4-31
ΝO	A562	5 th frequency minimum limiter	0.00, start frequency- 5 th frequency maximum (Hz)	0.00	×	0	-	4-31
p	A063	Jump frequency1	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	A07	4-32
and	A064	Jump frequency Width 1	0.00-100.0(Hz)	0.50	×	0	○(F-19)	4-32
Upper	A065	Jump frequency2	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	A08	4-32
дq	A066	Jump frequency Width 2	0.00-100.0(Hz)	0.50	×	0	-	4-32
	A067	Jump frequency3	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	A09	4-32
	A068	Jump frequency Width 3	0.00-100.0(Hz)	0.50	×	0	-	4-32
	A069	Acceleration stop frequency	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	○(F-08)	4-32
~	A070	Acceleration stop time	0.00-60.0(Hz)	0.0	×	0	○(F-08)	4-32
AVR	A081	AVR selection	00(ON always)/01(OFF always)/02(OFF on decelerating)	00	×	×	○(F-03)	4-20
4	A082	Motor voltage selection	200/215/220/230/240,380/400/415/440/460/480, 575/600(V)	200/400	×	×	F11	4-20
	A092	Acceleration time2(1 st motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	0	0	○(F-06)	4-33
	A292 A392	Acceleration time2(2 nd motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00 15.00	0	0	-	4-33 4-33
	A392 A492	Acceleration time2(3 rd motor) Acceleration time2(4 th motor)	0.01-99.99/100.0-999.9/10003600.(s) 0.01-99.99/100.0-999.9/10003600.(s)	15.00	0	0	-	4-33
	A492 A592	Acceleration time2(4 motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	0	0	-	4-33
	A093	Deceleration time2(1 st motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	0	0	○(F-07)	4-33
	A293	Deceleration time2(2 nd motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	Ő	ŏ	-	4-33
	A393	Deceleration time2(3 rd motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	Ŏ	ŏ	-	4-33
	A493	Deceleration time2(4 th motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	Ő	Ŏ	-	4-33
	A593	Deceleration time2(5 th motor)	0.01-99.99/100.0-999.9/10003600.(s)	15.00	Ō	Ō	-	4-33
	A094	2 nd stage adjustable selection (1 st motor)	00(change with 2CH terminal)/01(change with setting)	00	×	×	-	4-33
	A294	2 nd stage adjustable selection (2 nd motor)	00(change with 2CH terminal)/01(change with setting)	00	×	×	-	4-33
	A394	2 nd stage adjustable selection (3 rd motor)	00(change with 2CH terminal)/01(change with setting)	00	×	×	-	4-33
nction	A494	2 nd stage adjustable selection (4 th motor)	00(change with 2CH terminal)/01(change with setting)	00	×	×	-	4-33
ole fur	A594	2 nd stage adjustable selection (5 th motor) 2 nd stage acceleration frequency	00(change with 2CH terminal)/01(change with setting)	00	×	×	-	4-33
justat	A095	(1 st motor) 2 nd stage acceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
Operation mode adjustable function	A295	(2 nd motor) 2 nd stage acceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
pom (A395	(3 rd motor) 2 nd stage acceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
ratior	A495	(4 th motor) 2 nd stage acceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
Ope	A595	(5 th motor) 2 nd stage deceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
	A096	(1^{st} motor) $2^{na} \text{ stage deceleration frequency}$	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
	A296	(2 nd motor) 2 nd stage deceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
	A396	(3 rd motor) 2 nd stage deceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
	A496	(4 th motor) 2 nd stage deceleration frequency	0.01-99.99/100.0-999.9/10001500.(Hz)	0.00	×	×	-	4-33
	A596	(5 th motor)	0.01-99.99/100.0-999.9/10001500.(Hz) 00(straight line)/01(S-curve)/02(U-curve)/	0.00	×	×	-	4-33
	A097	Acceleration pattern selection	03(réverse U-curve) 00(straight line)/01(S-curve)/02(U-curve)/	00	×	×	-	4-34
	A098 A131	Acceleration curve constant	03(reverse U-curve) 01(small swelling)-10(large swelling)	00	×	×	-	4-34 4-34
							-	
	A132	Deceleration curve constant	01(small swelling)-10(large swelling)	02	×	0	-	4-34

Function mode

(Code	TION MODE Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
-	A101	OI start	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	-	4-23
ient	A102	OI end	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	-	4-23
istm	A103	OI start rate	0.0 - 100. (%)	20.	×	0	-	4-23
adju	A104	OI end rate	0.0 - 100. (%)	100.	×	0	-	4-23
lcy	A105	OI start selection	00(external start frequency)/01(0Hz)	01	×	0	-	4-23
External frequency adjustment	A111	O2 start	-150.0100.0/-999.9100.0/-99.9 - 0.00 - 999.9/ 1000 1500.(Hz)	0.00	×	0	-	4-23
ernal fi	A112	O2 end	-150.0100.0/-999.9100.0/-99.9 - 0.00 - 999.9/ 1000 1500.(Hz)	0.00	×	0	-	4-23
Exte	A113	O2 start rate	-100 100. (%)	-100.	×	0	-	4-23
	A114	O2 end rate	-100 100. (%)	100.	×	0	-	4-23
restart	b001	Retry selection	00(trip)/01(0Hz start)/02(start after equal frequency)/ 03(trip after equaling frequency and deceleration stop)/ 04(Restart with a frequency before IPF)	00	×	0	A34	4-23
ailure 1	b002	Allowable under-voltage power failure time	0.3-25.0(s)	1.0	×	0	○(F-14)	4-35
er fe	b003	Retry wait time	0.3-100.(s)	1.0	×	0	○(F-14)	4-35
s powe	b004	Instantaneous power failure/ under-voltage trip during stop	00(invalid/01(valid)/02(invalid during stop and deceleration by stop command)	00	×	0	○(F-14)	4-35
Instantaneous power failure restart	b005	Instantaneous power failure/ under-voltage retry time selection	00(16 times)/01(free)	00	×	0	-	4-35
Inst	b006	Open-phase selection	00(invalid)/01(valid)	00	×	0	-	4-37
	b007	Frequency setting to match	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	-	4-35
	b012	1 st Electronic thermal level	0.2 * constant current - 1.20 * constant current(A)	Rated Current	×	0	A23	4-37
	b012	1 st electronic thermal	01(constant torque characteristic)/02(free setting)	of inverter 01	×	0	A23	4-37
	b015	characteristic selection 1 st Free electronic thermal	01500.(Hz)	0.	×	0	○(F-15)	4-38
	b016	frequency 1 1 st Free electronic thermal	0.0-1000.(A)	0.0	×	0	○(F-15)	4-38
	b010	current 1 1 st Free electronic thermal		0.	×	0	○(F-15)	4-38
		frequency 2 1 st Free electronic thermal	01500.(Hz)				. ,	
	b018	current 2 1 st Free electronic thermal	0.0-1000.(A)	0.0	×	0	○(F-15)	4-38
	b019	frequency 3 1 st Free electronic thermal	01500.(Hz)	0.	×	0	○(F-15)	4-38
	b020	current 3	0.0-1000.(A)	0.0 Rated Current	×	0	○(F-15)	4-38
	b212	2 nd Electronic thermal level	0.2 * constant current - 1.20 * constant current(A)	of inverter	×	0	A23	4-37
	b213	2 nd electronic thermal characteristic selection	01(constant torque characteristic)/02(free setting)	01	×	0	A24	4-37
ermal	b215	2 nd Free electronic thermal frequency 1	01500.(Hz)	0.	×	0	-	4-38
nic the	b216	2 nd Free electronic thermal current 1	0.0-1000.(A)	0.0	×	0	-	4-38
Electronic thermal	b217	2 nd Free electronic thermal frequency 2	01500.(Hz)	0.	×	0	-	4-38
1	b218	2 nd Free electronic thermal current 2	0.0-1000.(A)	0.0	×	0	-	4-38
1	b219	2 nd Free electronic thermal frequency 3	01500.(Hz)	0.	×	0	-	4-38
	b220	2 nd Free electronic thermal current 3	0.0-1000.(A)	0.0	×	0	-	4-38
	b312	Electronic thermal level	0.2 * constant current - 1.20 * constant current(A)	Rated Current of inverter	×	0	-	4-37
	b313	3 rd electronic thermal characteristic selection	01(constant torque characteristic)/02(free setting)	01	×	0	-	4-37
	b315	3 rd Free electronic thermal frequency 1	01500.(Hz)	0.	×	0	-	4-38
	b316	3 rd Free electronic thermal current 1	0.0-1000.(A)	0.0	×	0	-	4-38
	b317	3 rd Free electronic thermal frequency 2	01500.(Hz)	0.	×	0	-	4-38
	b318	3 rd Free electronic thermal current 2	0.0-1000.(A)	0.0	×	0	-	4-38
	b319	3 rd Free electronic thermal	01500.(Hz)	0.	×	0	-	4-38
L	I	frequency 3			1		L .	

Function mode

C	Code	TION MODE	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
	b320	3 rd Free electronic thermal current 3	0.0-1000.(A)	0.0	×	0	-	4-38
	b412	4 th Electronic thermal level	0.2 * constant current - 1.20 * constant current(A)	Rated Current of inverter	×	0	-	4-37
	b413	4 th electronic thermal characteristic selection	01(constant torque characteristic)/02(free setting)	01	×	0	-	4-37
	b415	4 th Free electronic thermal frequency 1	01500.(Hz)	0.	×	0	-	4-38
	b416	4 th Free electronic thermal current 1	0.0-1000.(A)	0.0	×	0	-	4-38
	b417	4 th Free electronic thermal frequency 2	01500.(Hz)	0.	×	0	-	4-38
	b418	4 th Free electronic thermal current 2	0.0-1000.(A)	0.0	×	0	-	4-38
rmal	b419	4 th Free electronic thermal frequency 3	01500.(Hz)	0.	×	0	-	4-38
Electronic thermal	b420	4 th Free electronic thermal current 3	0.0-1000.(A)	0.0	×	0	-	4-38
lectro	b512	5 th Electronic thermal level	0.2 * constant current - 1.20 * constant current(A)	Rated Current of inverter	×	0	-	4-37
ш	b513	5 th electronic thermal characteristic selection	01(constant torque characteristic)/02(free setting)	01	×	0	-	4-37
	b515	5 th Free electronic thermal frequency 1	01500.(Hz)	0.	×	0	-	4-38
	b516	5 th Free electronic thermal current 1	0.0-1000.(A)	0.0	×	0	-	4-38
	b517	5 th Free electronic thermal frequency 2	01500.(Hz)	0.	×	0	-	4-38
	b518	5 th Free electronic thermal current 2	0.0-1000.(A)	0.0	×	0	-	4-38
	b519	5 th Free electronic thermal frequency 3	01500.(Hz)	0.	×	0	-	4-38
	b520	5 th Free electronic thermal current 3	0.0-1000.(A)	0.0	×	0	-	4-38
	b021	1 st Overload restriction selection	00(invalid)/01(enabled on acceleration / constant speed)/ 02(constant speed)	01	×	0	○(F-16)	4-39
	b221	2 nd Overload restriction selection	00(invalid)/01(enabled on acceleration / constant speed)/	01	×	0	-	4-39
	b321	3 rd Overload restriction selection	02(constant speed) 00(invalid)/01(enabled on acceleration / constant speed)/	01	×	0	-	4-39
	b421	4 th Overload restriction selection	02(constant speed) 00(invalid)/01(enabled on acceleration / constant speed)/	01	×	0	-	4-39
	b521	5 th Overload restriction selection	02(constant speed) 00(invalid)/01(enabled on acceleration / constant speed)/	01	×	0	_	4-39
			02(constant speed)	Rated current				
	b022	1 st Overload restriction level	0.50* rated current-2.00* rated current(A)	of Inverter x 1.50	×	0	○(F-16)	4-39
	b222	2 nd Overload restriction level	0.50* rated current-2.00* rated current(A)	Rated current of Inverter	×	0	-	4-39
d limit				x 1.50 Rated current				
Overload limit	b322	3 rd Overload restriction level	0.50* rated current-2.00* rated current(A)	of Inverter x 1.50	×	0	-	4-39
0	b422	4 th Overload restriction level	0.50* rated current-2.00* rated current(A)	Rated current of Inverter x 1.50	×	0	-	4-39
	b522	5 th Overload restriction level	0.50* rated current-2.00* rated current(A)	Rated current of Inverter x 1.50	×	0	-	4-39
	b023	1 st Overload restriction limit constant	0.10-30.00(s)	1.00	×	0	○(F-16)	4-39
	b223	2 nd Overload restriction limit constant	0.10-30.00(s)	1.00	×	0	-	4-39
	b323	3 rd Overload restriction limit constant	0.10-30.00(s)	1.00	×	0	-	4-39
	b423	4 th Overload restriction limit constant	0.10-30.00(s)	1.00	×	0	-	4-39
	b523	5 th Overload restriction limit constant	0.10-30.00(s)	1.00	×	0	-	4-39

Function mode

(Code	Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
Lock	b031	Software lock mode selection	00(impossible to change the data except this item when SFT terminal is ON)/01(impossible to change the data except setting frequency item when SFT terminal is ON)/ 02(impossible to change the data except this item)/ 03(impossible to change the data except setting frequency item)/ 10(possible to change data on operating)	01	×	0	○(F-17)	4-47
	b100	Free V/f frequency 1	0 Free V/f frequency2(Hz)	0.	×	×	-	4-25
	b101	Free V/f voltage 1	0800.0(V)	0.0	×	×	-	4-25
	b102	Free V/f frequency 2	0 Free V/f frequency3(Hz)	0.	×	×	-	4-25
	b103	Free V/f voltage 2	0800.0(V)	0.0	×	×	-	4-25
Ð	b104	Free V/f frequency 3	0 Free V/f frequency4(Hz)	0.	×	×	-	4-25
Free V/f setting	b105	Free V/f voltage 3	0800.0(V)	0.0	×	×	-	4-25
/f se	b106	Free V/f frequency 4	0 Free V/f frequency5(Hz)	0.	×	×	-	4-25
se <	b107	Free V/f voltage 4	0800.0(V)	0.0	×	×	-	4-25
Fre	b108	Free V/f frequency 5	0 Free V/f frequency6(Hz)	0.	×	×	-	4-25
	b109	Free V/f voltage 5	0800.0(V)	0.0	×	×	-	4-25
	b110 b111	Free V/f frequency 6 Free V/f voltage 6	0 Free V/f frequency7(Hz) 0800.0(V)	0.0	×	×	-	4-25 4-25
	b112	Free V/f frequency 7	01500.0(V)	0.0	×	×	-	4-25
	b113	Free V/f voltage 7	0800.0(V)	0.0	×	×	-	4-25
	C001	Intelligent input 1 setting	01/(RV:Reverse is valid)/02(CF1:Multi-speed1)/ 03(CF2:Multi-speed2)/04(CF3:Multi-speed3)/	18	×	0	C0	4-43
	C002	Intelligent input 2 setting	05(CF4:Multi-speed4)/07(DB:External DC braking)/ 09(2CH:two-stage adjustable speed)/ 11(FRS:Free-run)/	16	×	0	C1	4-43
	C003	Intelligent input 3 setting	12(EXT:External trip)/13(USP:Unattended start protection)/ 15(SFT:software lock)/16(AT:Analog input voltage/current select)/ 18(RS:Reset inverter)/20(STA:3wire run)/21(STP:3wire keep)/	13	×	0	C2	4-43
	C004	Intelligent input 4 setting	22(F/R:3wire forward/reverse)/ 27(UP:Remote control UP function)/	11	×	0	C3	4-43
	C005	Intelligent input 5 setting	28(DWN:Remote control DOWN function)/ 29(UDC:Remote control data clear)/ 31(OPE:Operating by operator select)/32(SF1:Multi-speed bit1)/	09	×	0	C4	4-43
	C006	Intelligent input 6 setting	33(SF2:Multi-speed bit2)/34(SF3:Multi-speed bit3)/ 35(SF4:Multi-speed bit2)/34(SF3:Multi-speed bit5)/	03	×	0	C5	4-43
setting	C007	Intelligent input 7 setting	37(SF6:Multi-speed bit6)/38(SF7:Multi-speed bit7)/ 39(OLR:Overload restriction change)/46(LAC:LAD cancel)/	02	×	0	C6	4-43
erminal	C008	Intelligent input 8 setting	50(SET0:Control)/51(SET1:2 nd Control)/52(SET2:2 nd Control)/ no (NO: No assign)	01	×	0	C7	4-43
input t∈	C011	Intelligent input 1 a/b (NO/NC) selection Intelligent input 2 a/b (NO/NC)	00(NO)/01(NC)	00	×	0	C20	4-44
Intelligent input terminal setting	C012	selection Intelligent input 3 a/b (NO/NC)	00(NO)/01(NC)	00	×	0	C20	4-44
Inte	C013	selection Intelligent input 4 a/b (NO/NC)	00(NO)/01(NC)	00	×	0	C20	4-44
	C014	selection Intelligent input 5 a/b (NO/NC)	00(NO)/01(NC)	00	×	0	C20	4-44
	C015	selection Intelligent input 6 a/b (NO/NC)	00(NO)/01(NC)	00	×	0	C20	4-44
	C016 C017	selection Intelligent input 7a/b (NO/NC)	00(NO)/01(NC) 00(NO)/01(NC)	00	× ×	0	C20 C20	4-44 4-44
	C017	selection Intelligent input 8 a/b (NO/NC)	00(NO)/01(NC) 00(NO)/01(NC)	00	×	0	C20	4-44
	C018	selection Input FW a/b (NO/NC)	00(NO)/01(NC)	00	×	0	-	4-44
бu	C021	Selection Intelligent output 11 setting	00(RUN:running)/01(FA1:Frequency arrival type1 signal)/	01	×	0	C10	4-52
al settii	C022	Intelligent output 12 setting	00(RUN:running)/01(FA1:Frequency arrival type1 signal)/ 02(FA2:over setting frequency)/ 03(OL:Overload advance notice signal)/	00	×	0	C11	4-52
Intelligent output terminal setting	C023	Intelligent output 13 setting	05(AL:Alarm signal)/06(FA3:Only setting frequency)/ 08(IP:On instantaneous stop)/09(UV:Under voltage)/	03	×	0	-	4-52
output	C024	Intelligent output 14 setting	11(RNT:RUN time over/12(ONT:ON time over)/ 13(THM:thermal caution)/	02	×	0	-	4-52
lligent	C025	Intelligent output 15 setting	(Intelligent output terminal 11-13 or 11-14 becomes AC0-AC2 or AC0-AC3 (Can:Alarm cord output) forcibly when	08	×	0	-	4-52
Inte	C026	Alarm relay output	alarm cord output is selected in C062)	05	×	0	-	4-52

Function mode

(Code	Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
ninal	C027	FM selection	00(Output frequency)/01(Output current)/ 03(Digital output frequency)/04(Output voltage)/ 05(Output electric power)/06(thermal load rate)/ 07(LAD frequency)	00	×	0	A-44	4-57
Monitor terminal	C028	AM selection	00(Output frequency)/01(Output current)/04(Output voltage)/ 05(Output electric power)/06(thermal load rate)/ 07(LAD frequency)	00	×	0	-	4-58
A	C029	AMI selection	00(Output frequency)/01(Output current)/04(Output voltage)/ 05(Output electric power)/06(thermal load rate)/ 07(LAD frequency)	00	×	0	-	4-58
	C031	Intelligent output 11 a/b	00(NO)/01(NC)	00	×	0	C21	4-52
	C032	Intelligent output 12 a/b	00(NO)/01(NC)	00	×	0	C21	4-52
	C033	Intelligent output 13 a/b	00(NO)/01(NC)	00	×	0	-	4-52
	C034	Intelligent output 14 a/b	00(NO)/01(NC)	00	×	0	-	4-52
bu	C035	Intelligent output 15 a/b	00(NO)/01(NC)	00	×	0	-	4-52
setting	C036	Alarm relay output a/b	00(NO)/01(NC)	01	×	0	C21	4-52
level s	C040	Overload advance notice signal output mode	00(On accel. And decel, constant speed)/ 01(Only constant speed)	01	×	0	-	4-40
output	C041	1 st Overload advance notice level	0.0-2.0*rated current(A)	Inverter rated current	×	0	○(F-25)	4-40
ting • C	C241	2 nd Overload advance notice level	0.0-2.0*rated current(A)	Inverter rated current	×	0	-	4-40
state setting • Output level	C341	3 rd Overload advance notice level	0.0-2.0*rated current(A)	Inverter rated current	×	0	-	4-40
inal st	C441	4 th Overload advance notice level	0.0-2.0*rated current(A)	Inverter rated current	×	0	-	4-40
Output terminal	C541	5 th Overload advance notice level	0.0-2.0*rated current(A)	Inverter rated current	×	0	-	4-40
Outp	C042	Frequency arrival setting for acceleration.	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	A39	4-54
	C043	Frequency arrival setting for deceleration.	0.00-99.99/100.0-999.9/10001500.(Hz)	0.00	×	0	A40	4-54
	C061	Thermal warning level setting	0100.(%)	80	×	0	-	4-38
	C062	Alarm code selection	00(Invalid)/01(3bit)/02(4bit)	00	×	0	-	4-56
uo	C070	Data command	02(operator)/03(RS485)/04(option1)/05(option2)	02	×	×	-	4-62
Communication function adjustment	C071	Communicating transmission speed	02(loop-back test) 03(2400bps)/04(4800bps)/05(9600bps)/06(19200bps)	04	×	0	-	4-62
tine	C072	Communication code	132.	1.	×	0	-	4-62
nica djus	C073	Communication bit	7(7bit)/8(8bit)	7	×	0	-	4-62
ac	C074	Communication parity	00(no parity name)/01(even parity)/02(odd parity)	00	×	0	-	4-62
omi	C075	Communication stop bit	1(bit)/2(bit)	1	×	0	-	4-62
с	C078	Communication waiting time	01000.(ms)	0.	×	0	-	4-62
	C081	O adjustment	09999./1000-6553(10000-65530) (Note1)	Setting on forwarding	0	0	A80	-
Analog meter setting	C082	OI adjustment	09999./1000-6553(10000-65530) (Note1)	Setting on forwarding	0	0	A81	-
neter s	C083	O2 adjustment	09999./1000-6553(10000-65530) (Note1)	Setting on forwarding	0	0	-	-
μĝ	C085	Thermistor adjustment	0.0 - 1000.	105.0	0	0	-	4-58
Jalo	C086	AM offset adjustment	0.0 - 10.0(V)	0.0	0	0	-	4-58
Ar	C087	AMI adjustment	0 255.	80	0	0	-	4-58
	C088	AMI offset adjustment	0 20.0(mA)	Setting on forwarding	0	0	-	4-58

(Note1) Settings are factory-calibrated for each inverter. Do not change these setting unless absolutely necessary. Note that ib you restore factory defaults for all parameters, these settings will not change.

Function mode

Detail Full immeRues of N imm Isoul 0.0009 (0.000000000000000000000000000000		Function name	Setting range	Initial data	Setting on run	Change mode on run	JH300 O:Setting on remote	Page
Bits Start reduced voltage 00/Start reduced voltage time small: 00/Start reduced voltage time starting 06 × 0 - 0037 Display selection 00/Unit display/syl0 (tesch function display) 00 × 0 - 0038 AM adjustment 0255. 60 0 - - 0038 AM adjustment 0255. 60 0 - - 0038 Am digustment 0255. 60 0 - - 0038 Camp digustment 0.104:00 (class analization) 00 × - - 0036 County code for initiatization 000 (maid) of twaisi 00 × - - 0037 Strop key enable 00(uaid) of twaisi 00 × - - - 0038 Fereignery scalar conversion 0.1-00.01(Fer-un stop) 0.0 × - - - - - - - - - - - - - - -	RU	RUN time/Power ON time level	09999. (0-99990hr)/1000-6553(100000-655300) hr	0.	×	0	-	4-55
Bath reduced voltage 006(Start reduced voltage time (arge)) 06 × 0 · 4637 Display selection 00(display)(decide) 0.0 × 0.0 × 2064 Magiument 0.255. 480 0 × 0 × 0 2012 Start frequency auditation 0.050.00(tv) 3.00 × 0 × 0.00 2012 Start frequency auditation 0.010tv)(Dearting ranke 5.0 × 0 × 0.00 2014 Start frequency setting 0.510.00(tv) 3.00 × 0 × 1.0 × 1.725 2016 Initiatz mode 000(reducid)01(matid) 00 × × 1.125 2016 Stork key enable 000(reducid)01(matid) 00 × × 1.125 2017 Stork key enable 000(reducid)01(matid) 00 × × 1.125 2018 Rob anger ratin 000(reducid)01(reducid)01(reducid)01(reducid)01 0.0 ×	і Оре	Operation direction restrict	00(Reverse is valid)/01(Only forward)/02(Only reverse)	00	×	×	○(F-21)	4-17
Bits Display selection C2User setting/main setting/ DOID Addigation C - b081 Addigation 0.255. B00 0. - b082 Addigation 0.255. B00 0. Addigation b082 Start frequency setting 0.61-0.00(Hz) Decating numble 5.0 X 0. Addigation b083 Carrier frequency setting 0.01/trip history clear / addia initiazation/) 0.0 X X (F2) b085 Country code for initiazation 0.01/trip history clear / addia initiazation/) 0.0 X X - b085 Country code for initiazation 0.01/trip history clear / addia initiazation/) 0.0 X C Addia b1085 Edbar 0.01/trip history clear / addia initiazation/) 0.0 X C Addia b1085 B100 B100 Different initiazation/ 0.01/trip different initiazation/ 0.01/trip different initiazation/ 0.0 X X - b1095 B100 setection 0.01/trip diffe	Sta	Start reduced voltage	, , , , , , , , , , , , , , , , , , ,	06	×	0	-	4-41
Def FM adjustment 0285. 60 0 0.0 F10 b028 Start frequency atting 0.5-10.0(bt2) Detailing make 5.0 × 0.7 Add b038 Carter frequency atting 0.0120(bt2) Detailing make 5.0 × 0.7 Add b048 Initialization 0.0176 history clear + data initialization) 0.0 × × (f29) b055 County code for initialization 0.0104 initialization 0.0 × × - b056 Frequency scalar conversion 0.1-99 1.0 C C - b057 STOP key anale 0.004400 (bt3 attr)01(start f-equaing) 0.0 × C Add b050 BRD usage ratio 0.010402 start)01(start f-equaing) 0.0 × × - b051 Stop onde selection 00(decelariton stop)01(f7e-erun stop) 0.0 × × - b051 Stop onde selection 00(divial/910(sto)start f-equaing) 0.0 × C -	Dis	Display selection		00	×	0	-	4-60
Deg Solo × O A04 D032 Carrier frequency setting 0.510.01/kt2.Derating nambin 5.0 × 0 - D044 Initialize mode 00(Trip history cleary01 (that initialization) 00 × × - - D055 Country code for initialization 00(Trip history clear)41 (that initialization) 00 × -	AM	AM adjustment	0 255.	180	0	0	-	4-58
b083 Carrier frequency setting 0.5.10.0H±12 Derains anabit 5.0 × - b084 Countre code for insibilization 0001/Tip hetroy detar + data initialization) 00 × × - b085 Countre code for insibilization 001/tele/012(USA) 00 × - - b086 Countre code for insibilization 001/tele/012(USA) 00 × - - b086 Encountry scalar conversion 0.1-98.9 1.0 0 - - b087 STCP key enable 001/valid/01(Invalid) 00 × - A54 b088 BRD usage natio 0.01/bitz star/01(Start Fequaling) 00 × - - b089 Exect on 1 001(declerination stop/01(Free-run stop) 00 × - - b089 BRD selection 001(valid/01/Positive fund stop-0) 00 × - - b089 Thermistor start fere 0.01(valid/01/Positive fund stop-0) 00 × - - b0	FM	M adjustment	0 255.	60	0	0	F10	4-57
b04 Initialize mode 00/(Tip hatory deay/01 (Data initialization) 00 × × (F29) b085 Country code for initialization 02(Tip hatory deal + data initialization) 00 × × · b085 Country code for initialization 02(Tip hatory deal + data initialization) 00 × · · b085 Country code for initialization 0.199 9 1.0 · · · b087 STOP key enable 00/valid/01(valid) 00 × · A54 b008 BRD usage ratio 0.0-100.0(%) 0.0 × · A54 b009 BRD usage ratio 0.0-100.0(%) 0.0 × · · b019 Stop mode selection 00(leceleration stop)01(Free-run stop) 00 × · · b026 BRD selection 00(Invalid/01(valid-simulal during stop-) 00 × · · b037 Thermistor selection 00(Invalid/01(valid-simulal during stop-) 000 × · ·	Sta	Start frequency adjustment	0.10-50.00(Hz)	3.00			A04	4-41
Desp Outry code for initialization OU A A (P49) b089 Outry code for initialization 00(Inteinci)(IEC)02(USA) 00 X I b089 Outry code for initialization 0.1494 1.0 O X I b081 Guardian Control 0.1494 1.0 O X I b081 Guardian Control 0.0494 0.0 X I X I b091 Stop mode selection 00(deccleration stop)01(Fee-un stop) 00 X X I b092 Cooling fan control 01(ON during run, Afer power ON, then for 5 minutes on on O X X I b095 BRD selection 00(Invalid)01(Peatite membrand turing stop.)' 00 X I I b096 RBD enviet 330-380:868-780(7) 360/720 X I I c101 DPOWN selection 00(Invalid)01(Peatite membrand turing stop.)' 00 X I I c102 Best for on iselection 00(Inva	Car	Carrier frequency setting	0.5-10.0(kHz) Derating enable	5.0	×	0	-	4-21
Book Finguency scalar conversion actor 0.1.99.9 1.0 0 1.0 0 1.0 book Resume on FRS cancellation mode 000(valid)/01(invalid) 00 × 0 A54 book Resume on FRS cancellation mode 00(deltz start/01(start requaing) 00 × 0 A54 book Resume on FRS cancellation mode 00(deltz start/01(start requaing) 00 × 0 A54 boot Store mode 00(delta start/01(start requaing) 00 × - - boot Store mode Colong fan control 01(delta farm, Anter power ON, then for Sminutes on atop is mipled.) 000 × - - boog BRD selection 00(invalid/01(redistring stop>) 00 × - - boog Thermistor selection 00(invalid/01(redistring stop>) 000 × - - boog Thermistor selection 00(invalid/01(redistring stop>) 000 × - - colon 00(invalid/01(redistrind stop)) 00(redi	Initi	nitialize mode		00	×		(F29)	4-59
Deg Factor 0.1-99.9 1.0 O - Deg7 5705 Key chance 00(valid)01(maild) 00 × ○ A54 Deg8 5705 Key chance 0.00(valid)01(maild) 0.0 × ○ A54 De60 6R0 usage ratio 0.010(valid)01(free-tun stop) 0.0 × > A38 De60 6R0 usage ratio 0.010(decleration stop/01(free-tun stop) 0.0 × × - De60 6R0 usage ratio 0.00(exection stop/01(free-tun stop) 0.0 × × - De60 BR0 selection 00((rwalid)01(valid-valid during stop>) 0.0 × - - De68 RD O Niewi 330-380:660:760(V) 3800 ZO × - - De69 RD O Niewi 0.00((rwalid)01(reginer coefficient enable) 0.0 × - - De60 RD O Niewi 0.00(No display)01(Display) Note) 0.0 × - - C010 Debug mode selection <td< td=""><td>ο Οοι</td><td>Country code for initialization</td><td>00(Interior)/01(EC)/02(USA)</td><td>00</td><td>×</td><td>×</td><td>-</td><td>4-59</td></td<>	ο Οοι	Country code for initialization	00(Interior)/01(EC)/02(USA)	00	×	×	-	4-59
Bit Strate Strate <thstrate< th=""> <thstra< th=""> Stra<td></td><td></td><td>0.1-99.9</td><td>1.0</td><td>0</td><td>0</td><td>-</td><td>4-15</td></thstra<></thstrate<>			0.1-99.9	1.0	0	0	-	4-15
Book mode 00(0Hz start)0'(Start Lequaling) 00 × 0 A34 1000 BPDU sage ratio 0.0-100.0(k) 0.0 × 0 A33 1001 BPDU sage ratio 0.0(deceleration stop/01(Free-run stop) 0.0 × - A33 1002 Cooling fan control 01(ON during run, Alter power ON, then for 5 minutes on 00 × - - 1003 BRD selection 00(maild)01(valid-simalid during stop>) 00 × - - 1008 BRD ON level 303/930665/060(v) 360/720 × - - 1009 Thermistor selection 00(invalid)01(valid-simalid during stop>) 00 × - - 1009 Thermistor selection 00(invalid)01(valid-simalid during stop) 00 × 0 - - 1010 Keelection 00(No display)01(lobsplay)01(lobsplay) 00 × 0 - - 1011 Reset frequency matching 00(OHz start)01(lobsplay) 00 × <td< td=""><td>STO</td><td>STOP key enable</td><td>00(valid)/01(invalid)</td><td>00</td><td>×</td><td>0</td><td>(F20)</td><td>4-18</td></td<>	STO	STOP key enable	00(valid)/01(invalid)	00	×	0	(F20)	4-18
bg bg log × · b091 Stop mode selection 00(deceleration stop)/01(Free-run stop) 00 × × · b092 Cooling fan control 01(ON during run, Atter power ON, then for 5 minutes on stop is implied.) 00 × × · b095 BRD selection 00(invalid)/01(valid-wind) stop>) 00 × · · b096 BRD Neted 330-380(660-760(v) 3807.20 × · · b096 Thermistor selection 00(invalid)/01(Positive temperature coefficient enable) 00 × · · c001 Debug mode selection 00(No display)(01(Display) 000 × · · c010 Durg mode selection 00(No display)(01(Display)) 00 × · · c1012 Reset leftquancy matching selection 00(Not greunery datal)01(Keep frequency datal) 00 × · · c122 O1 zer adjustment 09999./1000-6553(10000-65530) Note) forwarding · ·			00(0Hz start)/01(Start f-equaling)	00	×	0	A54	4-48
bit constrained constrained constrained constrained constrained bit bit bit bit bit constrained	BRI	BRD usage ratio	0.0-100.0(%)	0.0	×	0	A38	4-42
bit constrained constrained constrained constrained constrained bit bit bit bit bit constrained	Sto	Stop mode selection	00(deceleration stop)/01(Free-run stop)	00	×	×	-	4-18
bit Display BND selection 02(valid-valid-valid-during stop) 00 × 0 - bit Display BRD ON level 330-380/60-780(V) 360/720 × 0 - bit Display Thermistor selection 00(invalid/0)(Positive temperature coefficient enable)/ 02(VITC enable) 00 × 0 - bit Display Thermistor selection 00(invalid/0)(Positive temperature coefficient enable)/ 02(VITC enable) 00 × 0 - C001 Debug mode selection 00(invalid/0)(Positive temperature coefficient enable)/ 00(invalid/0)(Positive temperature coefficient enable)/ 00(invalid/0)(Positive temperature coefficient enable)/ 00 00 × 0 - C101 UP/DWN selection 00(invalid/0)(Positive temperature coefficient enable)/ 02(Valid only during trip-Cancel during ON) 00 × 0 - C102 Reset selection 00(invalid/0)(Positive temperature coefficient enable)/ 02(Valid only during trip-Cancel during ON>) 00 × 0 - C121 O zero adjustment 09999/1000-6553(10000-65530) (Note) forwarding forwarding × A01 L123 O2	Cod	Cooling fan control	01(ON during run, After power ON, then for 5 minutes on	00	×	×	-	4-42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BRI	BRD selection		00	×	0	-	4-42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BRI	BRD ON level	330-380/660-760(V)	360/720	×	0	-	4-42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 The	hermistor selection		00	×	0	-	4-58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$) The	hermistor error level	0. – 9999. (ohm)	3000.	×	0	-	4-58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deb	Debug mode selection	00(No display)/01(Display) (Note)	00	×	0	⊖(F29)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UP/	JP/DWN selection	00(No frequency data)/01(Keep frequency data)	00	×	0	-	4-50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 Res	Reset selection		00	0	0	-	4-49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		00(0Hz start)/01(Start f-equaling)	00	×	0	-	4-49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 z) zero adjustment	09999./1000-6553(10000-65530) (Note)		0	0	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 012	DI zero adjustment	09999./1000-6553(10000-65530) (Note)		0	0	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02	02 zero adjustment	09999./1000-6553(10000-65530) (Note)		0	0	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 1 st ;	st allowable motor selection	0.20-75.0(kW)		×	×	A01	4-61
H303 3 rd allowable motor selection 0.20-75.0(kW) forwarding × × × - H403 4 th allowable motor selection 0.20-75.0(kW) Set on forwarding × × × - H503 5 th allowable motor selection 0.20-75.0(kW) Set on forwarding × × × - H503 5 th allowable motor selection 0.20-75.0(kW) Set on forwarding × × × - H004 1 st motor pole selection 2/4/6/8(pole) 4 × × A02 H304 3 rd motor pole selection 2/4/6/8(pole) 4 × × A02 H304 3 rd motor pole selection 2/4/6/8(pole) 4 × × - H404 4 th motor pole selection 2/4/6/8(pole) 4 × × - H504 5 th motor pole selection 2/4/6/8(pole) 4 × × - H006 1 st stabilized factor 0 255. 100. O -	8 2 nd	nd allowable motor selection	0.20-75.0(kW)		×	×	A01	4-61
H403 4 th allowable motor selection 0.20-75.0(kW) forwarding × × - H503 5 th allowable motor selection 0.20-75.0(kW) Set on forwarding × × - H004 1 st motor pole selection 2/4/6/8(pole) 4 × × A02 H304 3 rd motor pole selection 2/4/6/8(pole) 4 × × A02 H404 4 th motor pole selection 2/4/6/8(pole) 4 × × A02 H404 4 th motor pole selection 2/4/6/8(pole) 4 × × A02 H404 4 th motor pole selection 2/4/6/8(pole) 4 × × - H404 4 th motor pole selection 2/4/6/8(pole) 4 × × - H504 5 th motor pole selection 2/4/6/8(pole) 4 × × - H006 1 st stabilized factor 0255. 100. O - - H206 2 nd stabilized factor 0.	3 3 rd	rd allowable motor selection	0.20-75.0(kW)		×	×	-	4-61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 4 th	th allowable motor selection	0.20-75.0(kW)		×	×	-	4-61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 th	th allowable motor selection	0.20-75.0(kW)		×	×	-	4-61
H304 3 rd motor pole selection 2/4/6/8(pole) 4 × × - H404 4 th motor pole selection 2/4/6/8(pole) 4 × × - H504 5 th motor pole selection 2/4/6/8(pole) 4 × × - H504 5 th motor pole selection 2/4/6/8(pole) 4 × × - H006 1 st stabilized factor 0 255. 100. O - H206 2 rd stabilized factor 0 255. 100. O - H306 3 rd stabilized factor 0 255. 100. O - H406 4 th stabilized factor 0 255. 100. O - H406 5 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O -			2/4/6/8(pole)	4	×	×	A02	4-61
H404 4 th motor pole selection $2/4/6/8$ (pole) 4 × × - H504 5 th motor pole selection $2/4/6/8$ (pole) 4 × × - H006 1 st stabilized factor 0 255. 100. O - H206 2 nd stabilized factor 0 255. 100. O - H306 3 rd stabilized factor 0 255. 100. O - H406 4 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O -			2/4/6/8(pole)	4			A02	4-61
H504 5 th motor pole selection 2/4/6/8(pole) 4 \times \times $-$ H006 1 st stabilized factor 0 255. 100. \bigcirc $-$ H206 2 nd stabilized factor 0 255. 100. \bigcirc $-$ H306 3 rd stabilized factor 0 255. 100. \bigcirc $-$ H406 4 th stabilized factor 0 255. 100. \bigcirc $-$ H406 5 th stabilized factor 0 255. 100. \bigcirc $-$ H506 5 th stabilized factor 0 255. 100. \bigcirc $-$ H506 5 th stabilized factor 0 255. 100. \bigcirc $-$								4-61
H006 1 st stabilized factor 0 255. 100. \bigcirc - H206 2 nd stabilized factor 0 255. 100. \bigcirc - - H306 3 rd stabilized factor 0 255. 100. \bigcirc - - H406 4 th stabilized factor 0 255. 100. \bigcirc - - H506 5 th stabilized factor 0 255. 100. \bigcirc - - Option1 operation selection 0 255. 100. \bigcirc - -								4-61
H206 2 nd stabilized factor 0 255. 100. 0 - H306 3 rd stabilized factor 0 255. 100. 0 - - H406 4 th stabilized factor 0 255. 100. 0 - - H506 5 th stabilized factor 0 255. 100. 0 - - Option1 operation selection 0 - - - - -								4-61
H306 3 rd stabilized factor 0 255. 100. 0 - H406 4 th stabilized factor 0 255. 100. 0 - - H506 5 th stabilized factor 0 255. 100. 0 - - Option1 operation selection 0 - - - - -								4-61
H406 4 th stabilized factor 0 255. 100. O - H506 5 th stabilized factor 0 255. 100. O - -								4-61 4-61
H506 5 th stabilized factor 0 255. 100. O - Option1 operation selection								4-61 4-61
Option1 operation selection								4-61
	Opt	Option1 operation selection	00(TRP)/01(RUN)	00	×	0	(F32)	4-61
Option Option2 operation selection on error OO(TRP)/01(RUN) OO × O (F32)	, Opt	Option2 operation selection	00(TRP)/01(RUN)	00	×	0	(F32)	4-61
P031 Digital input option input mode selection (Acc/Dec) 00(operator)/01(option1)/02(option2) 00 × × -	Dig	Digital input option input	00(operator)/01(option1)/02(option2)	00	×	×	-	(Note1)

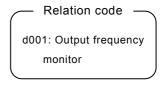
(Note1) Refer to the expension card manual for more detaile.

4.3 Explanation of function

4.3.1 Monitor mode

Output frequency monitor

Indication code d001 displays the frequency the inveter outputs.


The data is displayed as follows.

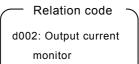
When d001 is displayed, the monitor lamp "Hz" is illuminated.

(Display)

0. - 99.9 : Display is in 1Hz unit. 100. - 999. : Display is in 1Hz unit.

1000. - 1500. : Display is in 1Hz unit.

Output current monitor


Indication code d002 displays the output current value.

The data is displayed as follows.

In case of displaying d002, the monitor lamp "A" is illuminated.

(Display)

0.0 - 999.9 : Display is in 0.1A unit.

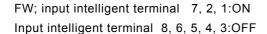
Operation direction monitor

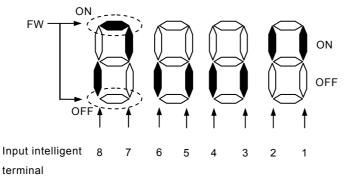
Indication code d003 displays the direction that the Inverter output is

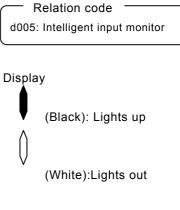
rotating. Forward, reverse or stop.

On operating the inverter (in case of forward or reverse), the RUN lamp will illuminate.

(Display)


- F : Forward
- o : Stop
- r : Reverse

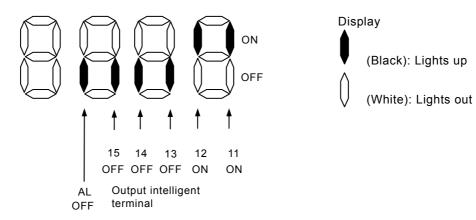

Relation code d003: Operation direction monitor


Intelligent input monitor

The LED display will monitor the state of the intelligent inputs.

(Example)

Intelligent output monitor


The LED display will monitor the state of the intelligent outputs.

Relation code d006: Intelligent output monitor

(Example)

Output intelligent terminal 12, 11: ON

Output alarm AL, Output intelligent terminal 15, 14, 13: OFF

Frequency conversion monitor

This inverter displays the value changed by the Inverter output frequency and the value set in b086 on the monitor part.

"Monitor part of display" = " output frequency(d001)" x " output frequency factor(b086)"

(Display) Display of d007

0.00 - 99.99 : Display is in 0.01 unit.

- 100.0 999.9 : Display is in 0.1 unit.
- 100. 9999 .: Display is in 1 unit.
- 1000 3996 : Display is in 10 unit.

(Range of setting) The setting range of b086 0.1 - 99.9 : Set it with the 0.1 unit.

(Example)Output frequency (d001):50.00Hz

When the frequency conversion factor (b086) is 1.1,

the frequency conversion monitor (d007) displays "55.00" as "50 x 1.1 = 55.00".

(Note)Output frequency of FM terminal becomes same as d007 at the time of setting up the digital output frequency to the FM terminal.

Output voltage monitor

This inverter displays the output voltage of the inverter converted into the alternating Voltage.

The monitor lamp "V" should illuminate while the contents of d013 are displayed.

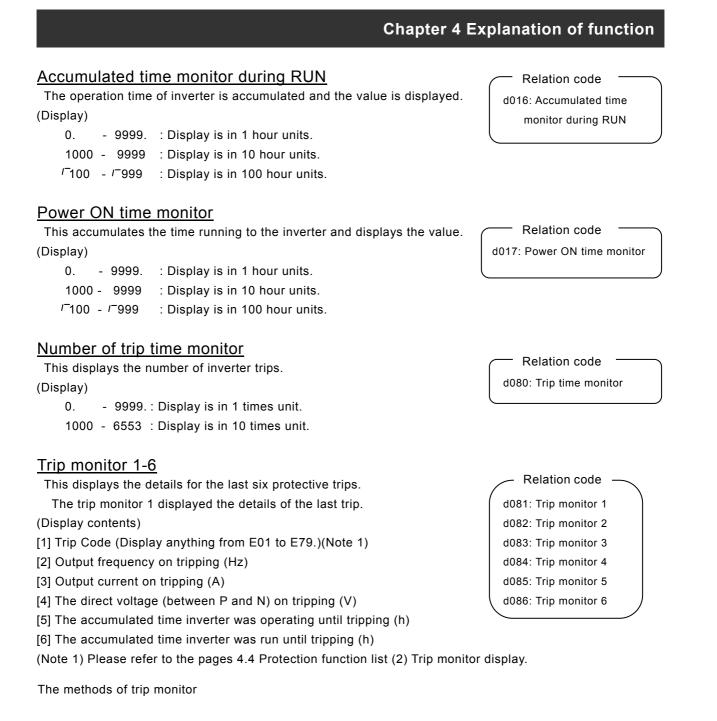
(Display)

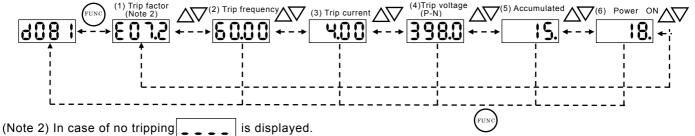
0.0 - 600.0 :Display is in 0.1V unit.

Input electric power monitor

Display input electric power from inverter.

The monitor lamp "kW" ("V" and "A") should illuminate while the contents of d014 is displayed.


(Display)


0.0 - 999.9 :Display is in 0.1kW unit.

Contraction code Contraction code Contraction code Contraction Con

Relation code d007: Frequency conversion monitor b086: Frequency conversion factor

d013: Output voltage monitor

4.3.2 Function mode

Output frequency setting

Setting the output frequency of the motor.

The output frequency is set by F001, when the frequency command select (A001) is set to 02.

Please refer to the frequency command select (A001) about other methods of frequency setting.

Relation code

F001 :Output frequency setting A001 :Frequency command select A020/A220-A520: 1st/2nd - 5th multistage speed zero C001-C008: Intelligent input terminal

When a frequency is set in F001, the same value is automatically set in 1st multi-stage zero speed (A020). Set up with F001 in the condition where turned on the SET terminal, whether or not it sets up with the 2nd multi-stage zero speed (A220)/ the 3rd - 5th multi-stage zero speed (A320-A520), in the case that the 2nd-5th control is set up.

In the case of using SET0-2, you will need to assign 50(SET0)/51(SET1)/52(SET2) to an intelligent input terminal.

Set item	Function code	Data	Contents
Output frequency setting	F001	0.0. start	Unit : Hz "F001" = "A020"
Multistage speed zero	A020/A220 -A520	frequency-1 st /2 nd -5 th maximum frequency	Second control setting of "F001" = "A220" Third control setting of "F001" = "A320" Fourth control setting of "F001" = "A420" Fifth control setting of "F001" = "A520"

Operation direction selection

This is effective when the operating command is set by the digital operator.

Function code	Data	Contents
F004	00	Forward
F004	01	Reverse

Selection with limits of operation direction

The direction of the motor can be restricted.

Function code Data		Contents
b035	00	Forward/reverse is effective.
	01	Only forward
	02	Only reverse

Frequency command selection

Select the method of frequency command.

When 0-10Vdc is inputted to the frequency command by 02-L terminal, operation direction of motor reverses.

On output frequency monitor d001, you can't get information about forward/reverse. So be sure with operation direction monitor d002.

Function code	Data	Contents
	(00)	(Setting frequency with the potentiometer the digital operator has.) (Note 1)
01		Setting frequency with control terminals (Terminals: O-L, OI-L, O2-L)
A001 -	02	Setting frequency with digital operator(F001), remote operator.
	03	Setting frequency with RS485 terminals for communication.
	04	Setting frequency with option board 1.
	05	Setting frequency with option board 2.

(Note 1): (Setting is possible at the time of the OPE-SR installation.)

select

F004: Operation direction

Relation code

Relation code b035: Selection with limits of operation direction

Relation code
 A001:Frequency command
 selection

Operation command selection

Select the control of RUN/STOP commands.

Operation command from the control terminals (Terminal)

Start/Stop by ON/OFF of control terminals.

Forward : FW-CM1 terminal

Reverse : RV-CM1 terminal

Put 01(RV) to an intelligent Input terminal.

When using the FW terminal, it is possible to change the contact from NO to NC by settin a or b (respectively) in C019.

When operating from the digital operator, set operation direction in F004.

Or operate Start/Stop with RUN key/STOP key on the digital operator.

When forward command and reverse command entered simultaneously, operation command becomes stop command .

Set item	Function code	Data	Contents
Operation		01	Start/Stop with control terminals(Terminal).(FW, RV)
		02	Start/Stop with digital operator, remote operator.
command	A002	03	Start/Stop with RS485 terminals for communications.
selection		04	Start/Stop with option board 1.
		05	Start/Stop with option board 2.
Input FW a/b	C010	00	a contact (NO)
(NO/NC) selection	C019 C011-C018	01	b contact (NC)

Selection on stop

When stop is commanded from the digital operator or the control terminals (Terminal), select the stop after slowing-down according to slowing-down time or the free run stop.

When the second cycle is started while in free run stop, the inverter follows the free-run stop selection b088 and restarts.

___ Relation code

1				
b091	:Selection on stop			
F003/F203-F503:				
	1 st /2 nd -5 th deceleration time			
b003	:Waiting time for retrying			
b007	:Frequency setting to match			
b088	:Select for free-run stop			

(Refer to the item of free-run stop.)

Set item	Function code	Data	Contents
Selection on Stop	b091	00	Normal stop (Decelerated stop)
		01	Free-run stop
Selection of free-run stop	b088	00	0Hz start
		01	Start frequency matching
Frequency setting to match	b007	0.00-1500.	Unit : Hz
Waiting time for retrying	b003	0.3-100.	Unit : second

Selection of Stop key

Even though the control terminals are selected for the operation command, you can still set whether the stop key of operator (digital operator etc) is effective or not. Trip reset function by the stop key complies with this setting, too.

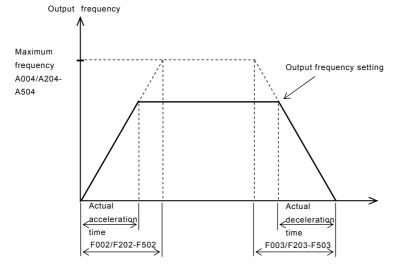
Function code	Data	Contents
b087	00	The stop key is effective.
	01	The stop key is ineffective.

Relation code
 b087: Selection of stop key

Relation code A002 :Operation command selection C001-C008: Intelligent input terminal C019 :Inputting FW a/b (NO/NC) selection F004 :Operation direction select

Adjustable time

The acceleration and deceleration time can be set. Set a long time to accelerate or decelerate slowly or set a short time to accelerate or decelerate quickly.


The time setting is the time it takes to accelerate from zero to the maximum frequency and to decelerate from the maximum frequency to zero. — Relation code

F002/F202-F502: 1^{st} / 2^{nd} - 5^{th} Acceleration time F003/F203-F503: 1^{st} / 2^{nd} - 5^{th} Deceleration time A004/A204-A504: 1^{st} / 2^{nd} - 5^{th} maximum frequency

When select the LAD cancel (LAC) function to intelligent input and turn on the signal acceleration/deceleration time is disregarded and the output frequency flatters the command frequency instantaneously.

Switching of the $1^{st}/2^{nd}$ - 5^{th} acceleration time and the $1^{st}/2^{nd}$ - 5^{th} deceleration time can be controlled with intelliginet input terminal assigned to 50(SET0)/51(SET1)/52(SET2).

Set item	Function code	Limit of setting	Contents
Acceleration time	F002/F202-F502	0.01-3600.	Unit : second Setting acceleration time from zero to maximum frequency.
Deceleration time	F003/F203-F503	0.01-3600.	Unit : second Setting deceleration time from maximum frequency to zero.
Intelligent input selection	C001-C008	46	LAD cancel

However short you set the adjustable time, the adjustable time of the actual motor can't be shorter than the shortest

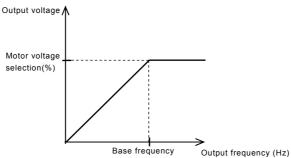
adjustable time determined by the inertial Effect J of the mechanical system and motor torque.

If you set the time shorter than the shortest adjustable time, a protection trip of OC or OV may occur.

Acceleration time ts

ts = (JL + JM) x NM 9.55 x (TS - TL)	JL: J of the load converted into motor shaft(kg∙m ²) JM: J of the motor(kg∙m ²)
	Nм: Motor revolving (r/min)
	Ts: The maximum motor acceleration torque on inverter driving (N•m)
Deceleration time tB	TB: The maximum motor deceleration torque on inverter driving (N•m)
tв= <u>(JL + Jм) х Nм</u>	TL: Needed transit torque (N•m)
9.55 x (Тв+Ть)	

Base frequency


Base frequency and motor voltage AVR function

(1) Base frequency and motor voltage

— Relation code

A003/A203-A503: 1st /2nd - 5th base frequency A081: AVR selection A082: Motor voltage selection

On selection of base frequency and motor voltage, set the output of the inverter (frequency voltage) to the motor rating.

The Base frequency is the nominal frequency of the motor, this value can be found on the nameplate of the motor. It is important to match the Base frequency (A003) to this nominal value or there is risk of damage to the motor.

If a motor has a base frequency higher than 60Hz, it is considered to be a special motor. In this situation, it is important to make sure the maximum output current of the inverter is higher than the FLC of the motor.

The Motor Voltage Selection is the nominal voltage of the motor, this value can be found on the nameplate of the motor. It is important to match the Motor Voltage (A082) to this nominal value or there is risk of damage to the motor.

When changing base frequency (A003)/second base frequency (A203) - fifth base frequency(A503) an intelligent input terminal must be set to 50(SET0) / 51(SET1) / 52(SET2) and switched on.

Set item	Function code	Setting limit	Contents
Base frequency	A003/A203 -A503	301 st /2 nd - 5 th maximum frequency	Unit:Hz
Motor voltage	Motor voltage	200/215/220/230/240	Unit:V When inverter is 200V class, selection is possible.
selection	A082	380/400/415/440/460/480	Unit:V When inverter is 400V class, selection is possible.

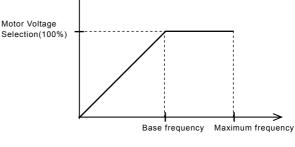
(2) AVR function

Even if the incoming voltage changes, this function will keep the output voltage and a constant voltage level. The output voltage to the motor in this function references to the voltage selected on motor voltage selection. Select Yes/No of this function on A081 AVR selection.

Function code	Data	Contents	Description
	00	Always ON	This function is effective on acceleration, constant speed, deceleration.
A081	31 ()1 Always ()EE		This function is ineffective on acceleration, constant speed, deceleration.
	02	On decelerating OFF	This increases a loss of motor and reduces the energy regenerated to inverter on decelerating.

Maximum frequency

Set the maximum frequency value of the inverter.


This set value is the maximum frequncey that the inverter will achieve when

It receives top speed reference from the control terminals or the digital operator.

To the change the $1^{st}/2^{nd}-5^{th}$ maximum frequency, set an intelligent input terminal to 50(SET0) / 51(SET1) / 52(SET2) and switch the input ON.

The Inverter output voltage from the base frequency to the maximum frequency is the same level as the voltage selected on the motor voltage selection.

Function code	Limit of setting	Contents
A004/ A204-A504	301500.	Unit : Hz

Carrier frequency

The carrier frequency of the PWM wave-form output from the inverter is adjustable by changing b083.

If the carrier frequency is set higher, the audible noise from motor will be reduced but the RFI noise and the leakage current may be increased. Relation code ______
 b083:Carrier frequency

This function may help to avoid the resonant frequency of the motor or the mechanical system.

Function code	Limit of setting	Contents	
b083	0.5-10.0	Unit:kHz	

External analog input (0, 02, 01)

This inverter has three kinds of external analog input terminals.

O-L terminal : 0 - 10V

OI-L termminal : 4 - 20mA

O2-L terminal : -10 / 0 / +10V

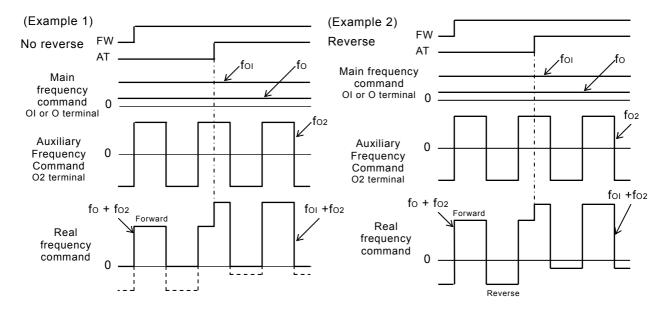
The setting contents of this function is as follows.

A005: AT terminal selection A006: 02 Selection

C001-C008: Intelligent input terminal

Setting item	Function code	Data	Contents	
AT terminal	erminal A005	00	Change of O/OI (AT terminal ON : OI-L valid with AT terminal (AT terminal OFF : O-L valid)	
selection	01	Change of O/O2 (AT terminal ON : O2-L valid with AT terminal (AT terminal OFF : O-L valid)		
	0		Single	
02 selection	02 selection A006	01	Auxiliary frequency command of O, OI(No reverse)	
			Auxiliary frequency command of O, OI(Reverse)	

Assign 16(AT) to intelligent input terminal.


The frequency setting is the values from terminals O, OI and O2 when 16(AT) isn't assigned. The frequency set up when A006 is "00" becomes the value of O2. And, the frequency set up when A006 is "01" or "02" becomes the value which OI and O2 were added to.

The following frequency command methods are available by combining A005, A006 with the intelligent input AT terminal.

In the case that reverse and FW(forward) terminals are ON, the inverter operates reversely when (main frequency command + auxiliarly frequency command)< 0.

maximum frequency

	A006	A005	AT terminal	Main frequency command	ExIstence of Auxiliarly frequency command(02-L)	Existence of Reverse
		00	OFF	O-L	No	
	00	00	ON	OI-L	No	No
	00	01	OFF	O-L	No	
		01	ON	O2-L	No	Yes
Intelligent input		00	OFF	O-L	Yes	
terminal	01	(Example 1)	ON	OI-L	Yes	No
on assigning	01	01	OFF	O-L	Yes	
AT		01	ON	O2-L	No	
		00	OFF	O-L	Yes	
	02	(Example 2)	ON	OI-L	Yes	Yes
	02	01	OFF	O-L	Yes	
		01	ON	O2-L	No	
Intelligent input	00	-	-	O2-L	No	Yes
Terminal when	01	-	-	Adding O-L and OI-L	Yes	No
Don't assign AT	02	-	-	Adding O-L and OI-L	Yes	Yes

Input frequency Start/End

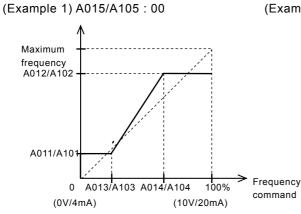
External analog signal from the control terminals

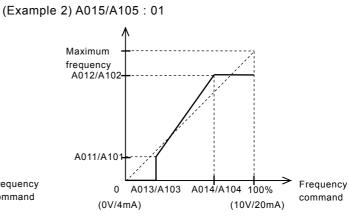
(frequency command)

O-L terminal : 0 - 10V

OI-L terminal : 4 - 20mA

O2-L terminal : -10 / 0 / +10V


Set output frequency for one of the above


(1)Start, End of O-L terminal, OI-L terminal

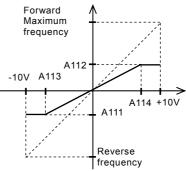
Relation code —	
A011: O start	A103: OI start rate
A012: O end	A104: OI end rate
A013: O start rate	A105: OI start selection
A014: O end rate	A111: O2 start
A015: O start selection	A112: O2 end
A101 : OI start	A113: O2 start rate
A102 : OI end	A114: O2 end rate

Set item	Function code	Data	Contents
O/OI start	A011/A101	0.00-1500.	Unit : Hz Set starting frequency
O/OI end	A012/A102	0.00-1500.	Unit : Hz Set ending frequency
O/OI start rate	A013/A103	0100.	Unit : % Set start rate for output frequency command 0-10V, 4-20mA
O/OI end rate	A014/A104	0100.	Unit : % Set end rate for output frequency command 0-10V, 4-20mA
	A015/A105	00	External start frequency Output frequency from 0 to A013/A103 outputs the value of A011/A101
O/OI start Selection	A015/A105	01	0Hz Output frequency from 0 to A013/A103 outputs the value of 0Hz

When the input is from 0 to 5V with O-L terminal, set A014 to 50%.

(2) Start, End of O2-L terminal

Set item	Function code	Data	Contents	Notes
O2 start	A111	-150150.	Unit : Hz Set starting frequency	
O2 end	A112	-150150.	Unit : Hz Set ending frequency	
O2 start rate	A113	-100100.	Unit : % Set starting rate for output frequency command -10-10V (Note 1)	(Example 3)
O2 end rate	A114	-100100.	Unit : % Set ending rate for output frequency command -10-10V (Note 1)	


(Note 1) The rates of -10V-10V is following.

-10V- 0V:-100-0%

0V-10V:0-100%

For example, in case of use with O2-L terminal, set -50% to A113, 50% to A114.

Setting analog input filter

Relation code
 A016: O, OI, O2 filter

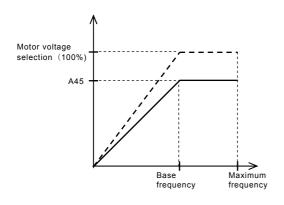
Set the internal filter of the frequency setting signal of voltage or current from the control terminals

It is important to first remove the source of the noise to the system.

When stable operation can not be achieved due to the effect of electrcal noise, set a larger value.

The response will be slower by setting a larger value. The limit of setting is about 2ms-60ms(set value : 1-30)

Function code	Limit to set	Contents
A016	130.	Can set with the 1 unit.


Output voltage gain

Regarding the voltage selected on A082 motor voltage selection as 100 %, set the rate of the voltage which the inverter outputs for the voltage selected.

Function code	Limit to set	Contents
A045	20100.	Unit:%

Relation code

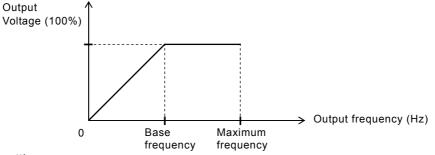
A045: Output voltage gain A082: Motor voltage selection

Control system (V/f Characteristic)

Set V/f (output voltage/output frequency) characteristic. To change 1^{st} / 2^{nd} - 5^{th} control system (V/f characteristic), set 50(SET0) / 51(SET1) / 52(SET2) to an intelligent input terminal and switch it ON. Relation code

A044/A244-A544:1st/2nd-5th control system b100/b102/b104/b106/b108/b110/b112

: Free setting V/f frequency 1/2/3/4/5/6/7 b101/b103/b105/b107/b109/b111/b113


: Free setting V/f voltage 1/2/3/4/5/6/7

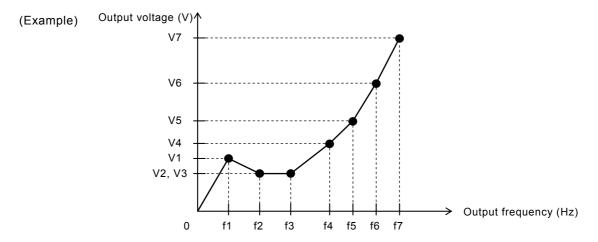
Function code	Data	V/f characteristic
A044/A244	00	Constant torque characteristic(VC)
-A544	02	Free setting V/f characteristic

(1) Constant torque characteristic (VC)

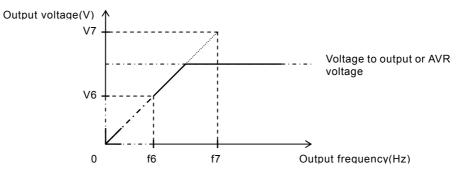
Output voltage outputs proportionally to the output frequency.

Output voltage outputs proportionally from 0 to the base frequency, but the output voltage from the base frequency to the maximum frequency is constant regardless of frequency.

(2) Free V/f setting


The free V/f setting sets optional V/f characteristics by setting the voltage and frequency in seven parts. (b100-b113)

The setting of free V/f setting operates always to be $1 \le 2 \le 3 \le 4 \le 5 \le 6 \le 7$.


Please set first free V/f setting 7 because the initial value is all 0Hz.

When the free V/f setting is valid, the function of torque boost(A041/A241), basic frequency(A003/A203), maximum frequency(A004/A204) is invalid. (Free V/f frequency7 is treated as maximum frequency.)

Set item	Function code	Data	Contents
Free V/f frequency7	b112	0 1500.	
Free V/f frequency6	b110	0 Free V/f frequency7	
Free V/f frequency5	b108	0 Free V/f frequency6	
Free V/f frequency4	b106	0 Free V/f frequency5	Unit : Hz
Free V/f frequency3	b104	0 Free V/f frequency4	
Free V/f frequency2	b102	0 Free V/f frequency3	
Free V/f frequency1	b100	0 Free V/f frequency2	
Free V/f voltage7	b113		
Free V/f voltage6	b111		
Free V/f voltage5	b109		Unit : V
Free V/f voltage4	b107	0.0 - 800.0	(Note 1)
Free V/f voltage3	b105		
Free V/f voltage2	b103		
Free V/f voltage1	b101		

(Note 1) Even if you set 800V for free V/f voltage1-7, output of inverter can't be more than the input voltage or the AVR setting voltage.

Torque boost

Relation code

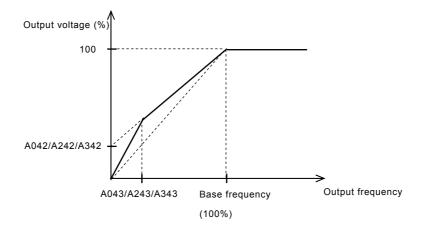
A correctly installed motor and careful attention to voltage drop in the wiring will improve the motor torque at low speed.

A042/A242:1st/2nd manual operation torque boost A043/A243:1st/2nd manual operation torque boost break point

Set item	Function code	Data	Contents
Manual torque boost	A042/A242 -A542	0.0-20.0	Unit: % Level corresponding to output Voltage (100%)
Manual torque boost break point	A043/A243 -A543	0.0-50.0	Unit:% Level corresponding to base frequency

(1) Manual torque boost

The values set up with A042/A242 and A043/A243 is outputted.


A042/A242 sets a percentage level where the base frequency voltage is 100%.

The level set is the value of torque boost output voltage at 0 Hz.

When using the manual torque boost, it should be noted that overuse will cause saturation of the motor and may cause damage.

The manual torque boost break point is the frequency at which the voltage torgue boost is switched off and normal operation resumes.

To change of A041,A042/A241-A541,A242-A542 an intelligent input needs to be set to 50(SET0)/ 51(SET1)/52(SET2) and switched on.

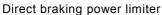
Direct current braking(DB)

A dc voltage can be applied to the motor windings in order to lock the motor shaft and avoid overun at low speeds.

There are two methods of activating the dc braking, Outside which is through the intelligent input

terminals and Inside which is automatically started at a specific frequency.

/	\backslash
A051: DC braking selection	A056: DC braking edge/level
A052: DC braking frequency	/ selection
A053: DC braking late time	A057: Starting DC braking power
A054: DC braking power	A058: Starting DC braking time
A055: DC braking time	A059: DC carrier frequency
C001-C008: Intelligent input	t terminal


Relation code

Set item	Functin code	Data	Contents
DC braking selection	A051	00	Inside DC braking : invalid
		01	Inside DC braking : valid
DC braking frequency	A052	0.00-500.00	Unit : Hz When the output reaches the set frequency and Inside DC braking is valid, DC braking is started.
DC braking late time	A053	0.0-5.0	Unit : second After DC braking time is reached, or DB terminal is ON, the late time is a delay before DC braking is started.
DC braking power /Starting DC braking power	A054/A057	0. \$	Unit : % Weak (Zero current)
		100. (80.)	Strong (0.4 to 55kW: Range is from 0 to 100%) (75 to 150kW: Range is from 0 to 80%)
DC braking time	A055	0.0-60.0	Unit : second The DC braking is stopped after this time delay has elapsed. The time is tarted when the late time has elapsed.
DC braking edge/level	A 0.5.6	00	Edge movement (Example 1-6-a)
selection	A056	01	Level movement (Example 1-6-b)
Starting DC braking time	A058	0.0-60.0	Unit : second It is valid for inside DC braking. When operating command is ON, DC current is started.
DC braking carrier Frequency	A059	0.5-10	Unit : kHz

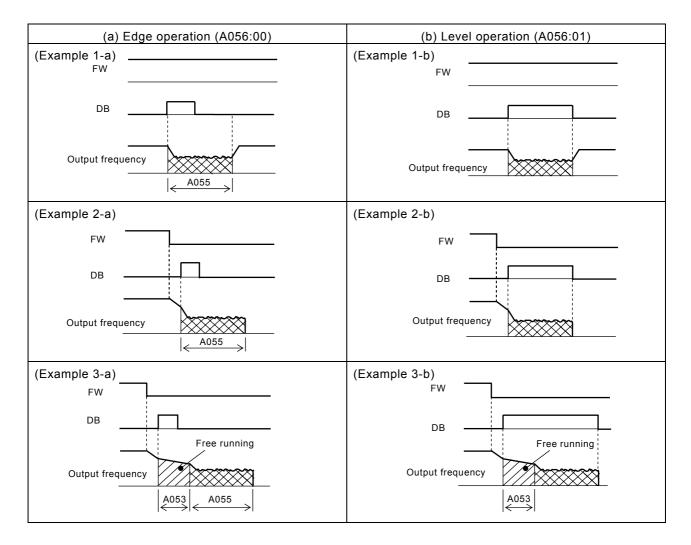
(1) DC braking carrier frequency

It is possible to alter the DC braking carrier frequency. Set DC braking carrier frequency with A059. However, Maximum braking power level is automatically reduced by DC breaking carrier freqency as follows.

100 90 Maximum (75) braking 80 ratio (%) 70 60 (46) 50 40 30 (22 20 (10)10 15 0 3 5 7 9 11 13 Direct braking carrier frequency (kHz)

(2) Outside DC braking

Set 07(DB) to an intelligent input terminal.


DC braking is then switched by ON/OFF of DB terminal irrespective of DC braking selection A051. Set strength of DC braking power with A054.

If DC braking late time A053 is set, the Inverter outpuit is cut off for this time period, the motor will be free running.

After the late time passes, DC braking is started.

Please set DC braking time A055 or DC braking time by DB terminal paying attention to the heat of the motor.

Please set each setting in accordance with the system, after level action or edge action are selected with A056.

Relation code

A061/A261:1st / 2nd

Frequency limiter

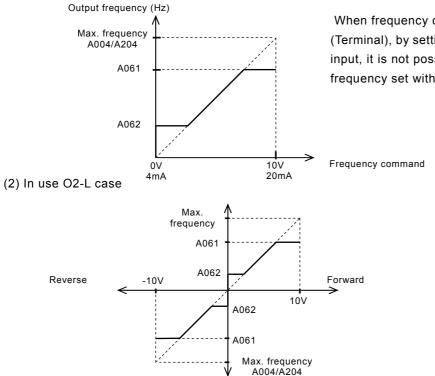
This function can set a maximum and minimum limit of the output frequency. Even if a frequency command exceeds the maximum and minimum limiter

the inverter will ignore this value and stop at the values set.

Set first maximum limiter on setting.

Be sure that the maximum limiter (A061/A261-A562) > minimum limiter (A062/A262-A562).

The maximum and minimum limiter will not operate if 0Hz is set.


This function is not avalable under third control function.

num limiter frequency maximum limiter A062/A262: 1st / 2nd

frequency minimum limiter

Set item	Function code	Setting limit	Contents
Frequency max. limiter	A061/A261 -A561	0.00, frequency min. limiter - max. limiter frequency	Unit : Hz Setting max. of output frequency
Frequency min. limiter	A062/A262 -A562	0.00, starting frequency - max. limiter frequency	Unit : Hz Setting min. of output frequency

(1) In use O-L, OI-L case

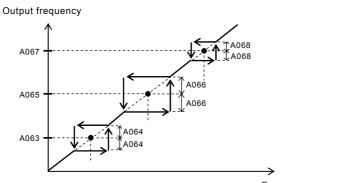
When frequency command is control terminal (Terminal), by setting Min. limiter, even if 0V is input, it is not possible to output less than the frequency set with Min. limiter.

When using the minimum frequency limiter and 0v is inputted into O2 terminal, A062 applies to both forward and reverse directions.

(a) When operation command is control terminal (Terminal)(A002:01)

Terminal	Revolution when O2 is 0V
FW(ON)	A062 on forward side
RV(ON)	A062 on reverse side

(b) When operation command is operator (A002:02)

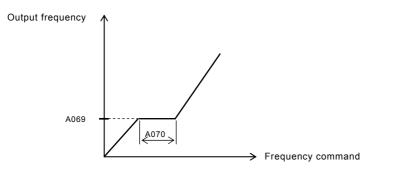

F004	Revolution when O2 is 0V
00	A062 on forward side
01	A062 on reverse side

Frequency jump function

Frequency jump can be used to avoid resonance points on machinery. Frequency jump is to jump the frquency command and avoid usual operation within the limit of the jump frequency.

Output frequency changes continuously according to adjustable time. It is possible three different points are set for the jump frequency. Relation code A063:Jump frequency1 A064:Jump frequency band1 A065:Jump frequency2 A066:Jump frequency band2 A067:Jump frequency 3 A068:Jump frequency band3

Set item	Function code	Setting limit	Contents
1	1000/1005/1007	0 00 4500 0	Unit: Hz
Jump frequency 1/2/3	A063/A065/A067	0.00-1500.0	Set the frequency fj of center to jump.
			Unit:Hz
Jump Width 1/2/3	A064/A066/A068	0.00-100.00	Set 1/2 value of frequency band to jump


Frequency command

Acceleration stop function

When the inertial moment of a load is high, this is the function to wait until the slip of the motor on starting becomes smaller. Use when the overcurrent trip occurs on starting. Relation code

A069:Acceleration stop frequency A070:Acceleration stop time

Set item	Function code	Data	Contents
Acceleration	1000	0.00-1500.	Unit: Hz
stop frequency	A069	0	Set the frequency to be held.
Acceleration	4070	4070 0.0.000	Unit: second
stop time	A070	0.0-60.0	Set the time to hold the frequency.

Two-stage acceleration and deceleration function (2CH)

By setting this function, it is possible to change the rate of acceleration and deceleration.

As methods to change the rate of acceleration and deceleration, you can select the method of changing by intelligent input terminal and the method of automatic changing by optional frequency. In case of changing by intelligent input terminal, assign 09(2CH) to an Intelligent input terminal. Relation code

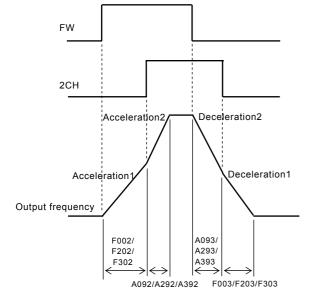
F002/F202-F502: $1^{st}/2^{nd}-5^{th}$ acceleration 1 F003/F203-F503: $1^{st}/2^{nd}-5^{th}$ deceleration time 1 A092/A292-A592: $1^{st}/2^{nd}-5^{th}$ acceleration time 2 A093/A293-A593: $1^{st}/2^{nd}-5^{th}$ deceleration time 2

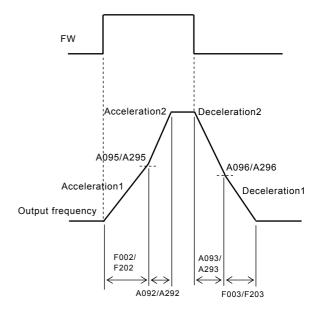
A094/A294-A594: 1st/2nd-5th two-stage

acceleration and deceleration selection

A095/A295-A595: $1^{st}/2^{nd}-5^{th}$ two-stage

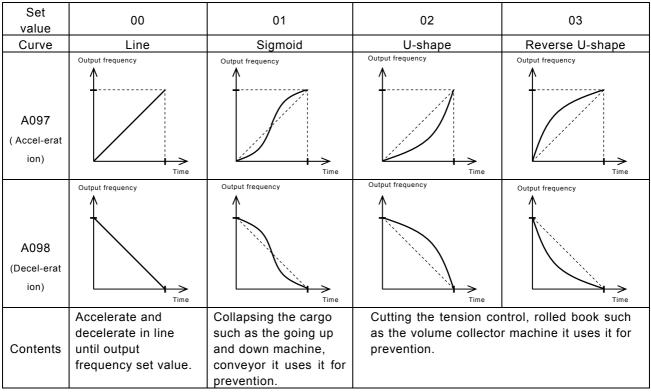
acceleration frequency


A096/A296-A596: 1st/2nd-5th two-stage


deceleration frequency

Set item	Function code	Data	Contents
Acceleration time 2	A092/A292 -A592	0.01-3600.	Unit : second (Example 1,2)
Deceleration time 2	A093/A293 -A593	0.01-3600.	Unit : second (Example 1,2)
Two-stage		00	Changing by intelligent input terminal 09 (2CH) (Example 1)
acceleration and deceleration selection	A094/A294 -A594	01	Changing by two-stage acceleration and deceleration frequency (A095/A295, A096/A296) (Example 2)
Two-stage acceleration frequency	A095/A295 -A595	0.00-1500.0	Unit: Hz It is valid when two-stage acceleration and deceleration selection (A094/A294) is 01. (Example 2)
Two-stage deceleration frequency	A096/A296 -A596	0.00-1500.0	Unit: Hz It is valid when two-stage acceleration and deceleration selection (A094/A294) is 01. (Example 2)

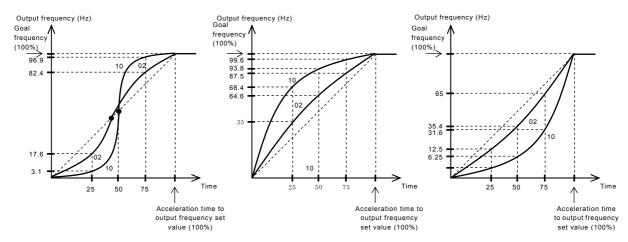
(Example 2) In to set A094/A294 to 01 case


Acceleration and deceleration pattern

(1) Selection of pattern

Pattern of acceleration and deceleration speed is possible to set up corresponding to each system.

Select the pattern of acceleration and deceleration with A097 and A098.


- Relation code
- A097: Acceleration pattern selection
- A098: Deceleration pattern selection
- A131: Acceleration curve constant
- A132: Deceleration curve constant

It is possible to set the pattern of both acceleration, deceleration.

(2) The curve constant (the swelling degree)

It makes the rough sketch reference and please decide the swelling degree.

There is the range which the midway adjustable-speed time becomes fast in the S character pattern. When An intelligent input terminal is allocated to LAD cancel (LAC) and the terminal is ON ,output frequency is immediately controlled by Setup frequency.

Instantaneous power failure / under-voltage

Instantaneous stop and start

(1) You can select whether the inverter trips or retries (restart) when an instantaneous power failure/under-voltage occurs. When retry function is selected with b001, and an instantaneous stop/under-voltage trip occurs restart is tried 16 times and a trip will occur after 17 times. And when retry function is selected, and an over-current or an over-voltage occurs, restart is tried 3 times and a trip will occur on the forth time. When an instantaneous power failure/under-voltage occurs, you can select execution of trip

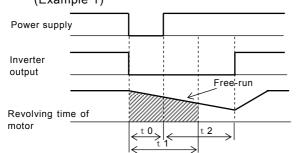
Relation code

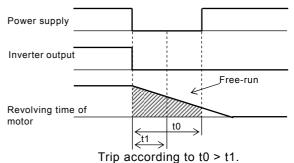
- b001 :Retry selection
- b002 :Allowable under-voltage power failure time
- b003 :Retry delay time
- b004 :Instantaneous power failure under-voltage trip during stop
- b005 :Instantaneous power failure undervoltage retry time selection
- b007 :frequency setting to match
- C021-C025 :Intelligent output terminal
- C026 :Alarm relay output

with b004. To select a retry function with b001, set the following retry mode correspondent to each system.

Set item	Function code	Data	Description
		00	Trip.
		01	Restart from 0Hz on retry.
Retry selection	b001	02	Start equaling frequency on retry. (Example 1)
(Note 3)	5001	03	Start f-equaling and stop decelerating on retry. After stop, start trip. (Note 1)
		04	
Allowable under- voltage power failure time	b002	0.3-1.0	Units: second If the instantaneous power failure time is shorter than the set time, a restart will occur. (Example 1) If the instantaneous stop time is longer than set time, trip. (Example 2)
Retry wait time	b003	0.3-100.	Units: second Delay before motor restart time.
Instantanoous nower	b004	00	Invalid Trip isn't caused and alarm isn't output.
Instantaneous power failure/under-voltage		01	Valid Trip is cause and alarm is output.
trip during stop (Note 2)		02	Invalid Trip isn't caused and alarm isn't output during stop and deceleration by stop command.
Instantaneous power		00	Restart to 16 times on instantaneous stop under-voltage.
failure/under-voltage retry time selection	b005	01	Restart freely on instantaneous stop under-voltage.
Frequency setting to match	b007	0.00-150 0.0	Units: Hz When the frequency of the motor during free-run is less than this set frequency, restart with 0Hz is caused. (Example 3,4)

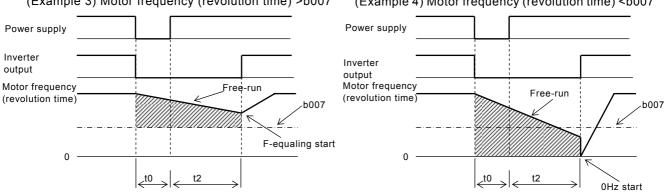
(Note 1) When trip of the over voltage or over current etc. occurs in the deceleration midway an instantaneous power failure error (E16) is displayed and operates free-run. In this case make the deceleration time of long


(Note 2) When using control power supply terminal R0-T0 and connecting DC voltage (P-N) to R0-T0, an under-voltage may be detected at power off and give trip signal. If this may cause any problem to your system, set data in 00 or 02.


F-equaling start: The inverter reads the motor RPM and direction and restarts the inverter to match these readings. Retry function (b001: 02): The timing chart in case of selection is following.

- t0 :Instantaneous stop power failure
- t1

:Allowable under-voltage power failure time(b002) t2 :Retry wait time(b003)

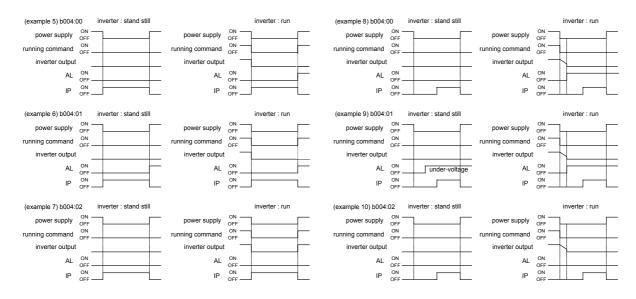

(Example 1)

(Example 2)

After wait for t2 seconds according to t0 < t1, restart.

(Example 3) Motor frequency (revolution time) >b007

(Example 4) Motor frequency (revolution time) <b007


(2) Instantaneous power failure during stop alarm output during under-voltage

Select yes/no of alarm output when instantaneous power failure or under-voltage occurs with b004.

Alarm outputs while control power of inverter remains.

· Alarm output at an instantaneous power failure and under-voltage during standstill.

Standard (Example 5-7). Alarm signal performance when connecting DC voltage (P-N) to R0-T0 terminal. (Example 8-10).

(3)It is possible to use an output by assigning the signal (IP: 08) during instantaneous stop, by setting (UV: 09) during under-voltage to an intelligent output terminal 11-15(C021-C025) or alarm relay output terminal (C026).

(Note 3) It displays as follows during implementing frequency matching.

(4)

Open phase protection function selection

This is the function to warn when the inverter input supply opens.

Relation code

b006:Open phase selection

Function code	Data	Description	
00	Invalid		
h000	00	Don't trip when the input supply opens	
b006		Valid	
	01	Trip when the input supply opens	

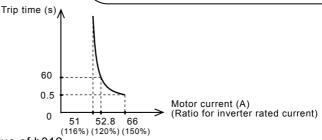
When an open phase occurs, there is a danger that the inverter could produce one of the following states;

- (1) Ripple current of main capacitor increases, life of main capacitor shortens remarkably.
- (2) In case of load, there is danger that the capacitors or thyristors inside the inverter could be damaged.
- (3) There is a risk that the in-rush resistor to limit the current inside the inverter may burn out.

Electronic thermal function

Set the Inverter according to motor rated current to protect the motor from overloading, overheating and damage. A warning signal is outputted before tripping on electronic thermal Protection.

Relation code


b012/b212-b512:1st/2nd-5th electric thermal level b013/b213-b513:1st/2nd-5th electric thermal characteristic selection b015/b017/b019:free electric thermal frequency 1/2/3 b215-b515/b217-b517/b219-b519: 2^{nd} -5th electric thermal frequency 1/2/3 b016/b018/b020:free thermal current 1/2/3 b216-b516/b218-b518/b220-b520: 2^{nd} -5th electric thermal current 1/2/3 C021-C025:Intelligent output terminal C026:Alarm relay output terminal C061:Thermal warning level

(1) Electronic thermal level

(Example) SJH300-16LF

Motor current: 46A

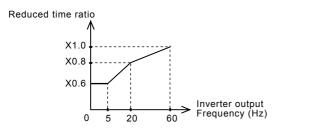
Function code	Setting range	Description
b012/b212	Rated Current x 0.2 to	L Inita A
-b512	Rated Current x 1.2	Units:A

(2) Electronic thermal characteristic

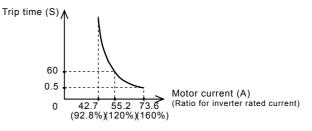
Setting range: 9.2 to 55.2A

When electronic thermal level b012=46A,

time limit characteristic is right diagram.

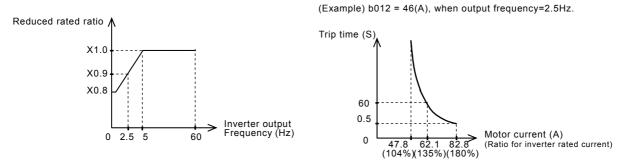

Frequency characteristic is added up to set value of b012.

Function	Deta	Electronic thermal
code	Dela	characteristic
b013/b213	01	Constant torque characteristic
-b513	02	Free setting


When output frequency of general motor decreases, cooling function of self-cooled fan will fall. Reduced torque characteristic is calculated according to heat of an HITACHI general motor.

(a) Reduced torque charcteristic

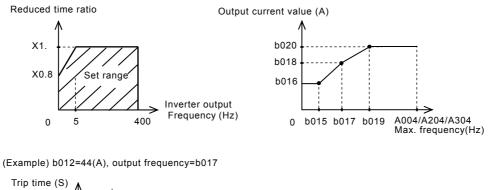
To add to the time limit characteristic set with the reduced time rate b012/b212/b312 by each frequency.

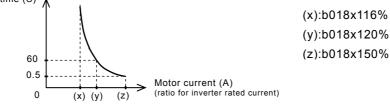


(Example) sb012 = 46(A), when output frequency = 20Hz

(b) Constant torque characteristic

Set this in to use constant torque motor case.




(3) Free/thermal characteristic

It is possible to set the electronic thermal characteristic freely according to the load in order to protect the motor and the Inverter.

Setting range is shown as follows;

Set item	Function code	Set range	Description
1 st -5 th Free electronic thermal	b015/b017/b019		
	b215-b515/b217-	0 to 1500	Units : Hz
frequency 1/2/3	b517/b219-b519		
1 st -5 th Free electronic thermal	b016/b018/b020	0.0	disable
	b216-b516/b218-	0.0 0.1 to 999.9	
current 1/2/3	b518/b220-b520	0.1 10 999.9	

(3) Thermal warning

A warning signal is outputted before overheat protection by the electronic thermal protection occurs. Warning level is set with C061.

Assign 13(THM) to an intelligent output terminal (C021-C025) or the alarm relay output (C026).

Function code	Data	Description
0004	0.	Themal warning is noneffectiv.
C061	1100.	Units : %

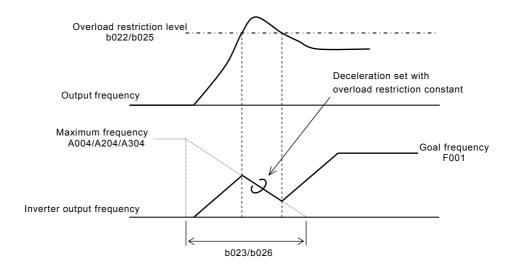
Overload restriction/Overload advance notice

(1) Overload restriction

The Inverter monitors the motor current on acceleration and constant speed, When the inverter reaches the overload restriction level, the Inverter will reduce the output frequency automatically to restrict the overload.This function prevents an over-current trip by inertia during acceleration or radical changes in load at constant speed.

Two kinds of overload restriction function are set with b021, b022, b023 and b024, b025, b026. To change b021, b022, b023 and b024, b025, b026, assign 39(OLR) to an intelligent input terminal. The current value this function operates at is set in overload restriction level. The overload restriction constant is the time to decelerate to 0Hz from max frequency.

b021, b022, b023 and b024, b025, b026 is changed with OLR.


As this function operates, the acceleration time is longer than setting time.

If the overload restriction constant is set too short, in spite of accelerating, an over-voltage trip is caused with regenerative enegy from the motor on automatic deceleration by this function.

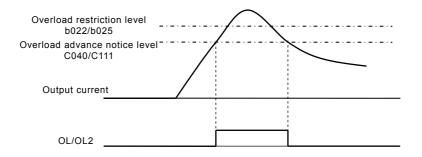
When this function operates in the midst of accelerating, the frequency will not reach the goal frequency, the Inverter will adjust in the following way.

Make acceleration time longer. Raise torque boost. Raise overload restriction level.

Set item	Function code	Data	Description	
Overload	b021/b221	00	Invalid	
restriction	-b521	01	Acceleration/valid on constant speed.	
Selection.	-0321	02	Valid on constant speed.	
Overload	b022/b222	Rated current x 0.5 to	Units :A	
restriction Level.	-b522	Rated current x 2.0	Current value overload restriction operates.	
Overload	b023/b223		Units :second	
restriction	-b523	0.1 to 30.0	Deceleration time when overload restriction	
Constant.	-0323		Operates.	

Relation code b021/b221-b521: 1st-5th Overload restriction selection b022: 1st-5th Overload restriction level b023: 1st-5th Overload restriction constant C001-C008: Intelligent input C021-C025: Intelligent output C026:Alarm relay output setting C040:Overload advance notice signal output mode C041: Overload notices level

(2) Overload advance notice

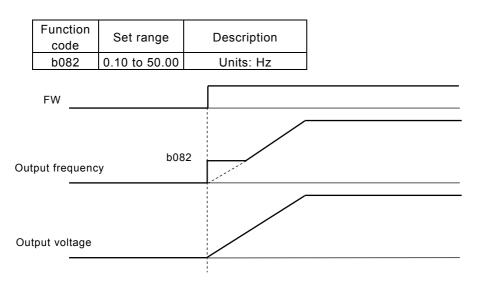

When the load is high, it is possible to adjust the load again by outputting an overload advance notice.

It is used to prevent damage to the machine from too much load, i.e. baggage on a conveyor, the Inverter overload protection will operate.

Assign 03(OL) or 26(OL2) to an intelligent output terminal 11 - 15 or the alarm relay output terminal.

(Two kinds of overload advance notice signals are possible output.)

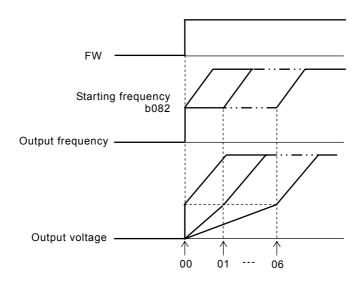
Set item	Function code	Data	Description
Overload advance notice	C040	00	On acceleration/deceleration, constant speed, this is valid.
signal output mode selection	0010	01	On constant speed only, this is valid.
Overload		0.0	Overload advance notice is non-effective.
advance notice	C041/C241		Units: A
level	-C541	0.1 to	As load reaches overload advance notice level,
		Rated current x 2	OL signal is output.



Start frequency

This frequency is the value the operator must set before the Inverter will give an output.

Mainly used when an operator adjusts the start torque.


By setting the start frequency higher, direct starting is caused and the starting current increases. Therefore an overload is within the restriction range and the inverter has a tendency to trip on over-current protection.

Reduced voltage start selection

This function is to raise the voltage slowly on motor starting. The lower this value the more torque is available on starting.. However, by making this value lower, the inverter has a tendency of tripping on over-current protection, because of almost direct starting. Relation code
 b036:Reduced voltage
 start selection
 b082:Start frequency

Function code	Data	Time to take for reduced voltage starting
0000	00	No reduced voltage start
	01	Short (about 6ms)
b036	^	↑
	\checkmark	\downarrow
	06	Long (about 36ms)

Relation code _____
 b082:Start frequency

BRD (dynamic braking) function

This function only operates with the SJh300 - 16LF and lower, as they have the built-in BRD.

This function is to consume regenerative energy from the motor as heat by the

use of an external resistor.

Regeneration occurs when the motor is decelerated to quickly and the motor turns into a generator and voltage flows back into the Inverter.

To use the BRD function, set following condition.

Set item	Function code	Data	Description
		0.0	BRD don't operate.
			The usage ratio of BRD is set by 0.1% unit.
BRD usage Ratio	b090	0.1-100.0	When inverter exceeds the usage ratio, trip. BRD action ON ON ON ON Usage ratio (%) = $\frac{(t1+t2+t3)}{100 \text{ second}}$ X100
		00	BRD don't operate.
Selection of BRD	b095	01	During run: valid (BRD operates.) During stop: invalid (BRD doesn't operate.)
		02	During run, stop, valid (BRD operates.)
BRD ON	b006	(Note 1) 330-380	Units: V In case of 200V class inverter, setting is valid.
Level	b096	(Note 1) 660-760	Units: V In case of 400V class inverter, setting is valid.

(Note 1) BRD ON level is the voltage setting of the DC (direct current) voltage of the inverter.

Cooling fan operating selection

You can select whether the fan operates continuously or operates only when the inverter is in the running operation.

Relation code b092:Cooling fan operation selection

Function code	Data	Description
	00	Always run
b092	01	Only during run However, inverter operates for five minutes after power ON, and for five minutes after inverter operation stops.

BRD (dynamic braking) function

This function only operates with the SJH300 - 16LF/HF and lower, as they have the built-in BRD.

This function is to consume regenerative energy from the motor as heat by the

use of an external resistor.

Regeneration occurs when the motor is decelerated to quickly and the motor turns into a generator and voltage flows back into the Inverter.

To use the BRD function, set following condition.

Set item	Function code	Data	Description
		0.0	BRD don't operate.
			The usage ratio of BRD is set by 0.1% unit.
BRD usage Ratio	b090	0.1-100.0	When inverter exceeds the usage ratio, trip. BRD action ON ON ON ON Usage ratio (%) = $\frac{(t1+t2+t3)}{100 \text{ second}}$ X100
		00	BRD don't operate.
Selection of BRD	b095	01	During run: valid (BRD operates.) During stop: invalid (BRD doesn't operate.)
		02	During run, stop, valid (BRD operates.)
BRD ON	b006	(Note 1) 330-380	Units: V In case of 200V class inverter, setting is valid.
Level	b096	(Note 1) 660-760	Units: V In case of 400V class inverter, setting is valid.

(Note 1) BRD ON level is the voltage setting of the DC (direct current) voltage of the inverter.

Cooling fan operating selection

You can select whether the fan operates continuously or operates only when the inverter is in the running operation.

Relation code b092:Cooling fan operation selection

Function code	Data	Description
	00	Always run
b092	01	Only during run However, inverter operates for five minutes after power ON, and for five minutes after inverter operation stops.

Intelligent input terminal setting

Relation code _____

It is possible to operate functions by assigning those functions to the intelligent input terminals 1-8 (C001-C008).

C001-C008: Intelligent input terminal

The intelligent input terminals 1-8 can be selected individually whether the contact input specification is either a NO or a NC contact.

Two or more intelligent input terminals can't be assigned to be the same function.

If an intelligent input is assigned a function which is already assigned to another terminal it will automatically be restored back to the setting before.

Function Code	Data	Description	Reference item	Page	
	01	RV: Reverse command	Operation command selection	4-18	
	02	CF1:Multi-speed 1 (binary operation)			
	03	CF2:Multi-speed 2 (binary operation)	Multi-speed operation function	4-44	
	04	CF3:Multi-speed 3 (binary operation)	Multi-speed operation function	4-44	
	05	CF4:Multi-speed 4 (binary operation)			
	07	DB: Direct current braking	DC braking(outside DC braking)	4-29	
	09	2CH:Two-stage adjustable-speed	Two-stage adjustable-speed function	4-33	
	11	FRS: Free-run stop	Free-run stop	4-48	
	12	EXT: External trip	External trip	4-51	
	13	USP: Unattended start protection	Unattended start protection function	4-50	
	15	SFT: Software lock (control terminal)	Software lock	4-47	
C001-	16	AT: analog input voltage/current select	Analog external input	4-21	
C001- C008	18	RS: Reset inverter	Reset inverter	4-49	
0000	20	STA:3 wire start			
	21	STP:3 wire stop	3 wire input function	4-51	
	22	F/R:3 wire direction			
	27	UP: Remote control UP function			
	28	DWN: Remote control DOWN function	UP/DOWN function	4-50	
	29	UDC: Remote control data clear			
	31	OPE: Force operation ope	Force operation function	4-47	
	32-38	SF1-7:Multi-speed 1-7 (bit run)	Multi-speed operation function	4-47	
	50	SET0: Control 0 bit			
	51	SET1: Control 1 bit	Motor control function switching	4-46	
	52	SET2: Control 2 bit			
	no	NO: No assign	-	-	

Input terminal a/b (NO/NC) selection

It is possible to set a contact input or b contact input to intelligent input terminals 1-8 and FW terminals individually.

Set item	Function code	Data	Description
Intelligent input 1-8	C011-C018	00	a contact(NO)
a/b(NO/NC)selection	011-0018	01	b contact(NC)
Input FW	C019	00	a contact(NO)
a/b(NO/NC)selection	0019	01	b contact(NC)

Relation code

C011-C018: Intelligent input a/b (NO/NC) selection C019: Input FW a/b (NO/NC) selection

a contact: "ON" with Close, "OFF" with Open b contact: "ON" with Open, "OFF" with Close RS terminal can set only a contact.

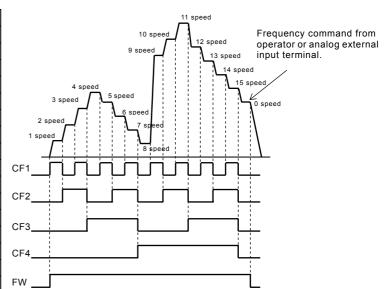
Multi-speed operation function (CF1-CF4,SF1-SF7)

It is possible to set multiple operation speeds and switch between the speeds with the terminals.

Multi-speed operation can be selected by binary operation(max. 16 speeds) with 4 terminals or by bit operation (max. 6 speeds) with 5 terminals.

Relation code A019: Multi-speed selection A020/A220-A520: 1st/2nd multi-stage speed zero speed A021-A035: Multi-speed 1-15 C001-C008: Intelligent input terminal

Set item	Functin code	Set value	Description
Multi-speed selection	A019	00	Change to binary operation 16 speed.
selection		01	Change to bit operation 5 speed
Multi-speed 0-15	A020/A220-A520, A021-A035	0.00, start frequency-max. frequency	Units:Hz

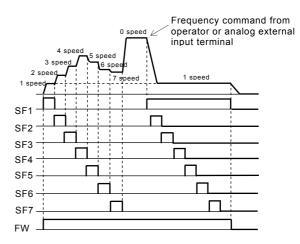

(1) Binary operation

It is possible to set multi-speed 0 to 15 by selecting 02 to 05 (CF1 to CF4) on the intelligent input terminals. Set frequency setting for speed 1 to 15 with A021-A035.

Set 0 speed with A020/A220-A520 or F001 when frequency command is operator.

Or when frequency command is control terminal (Terminal), set with O, OI, O2 terminal.

CF4	CF3	CF2	CF1
OFF	OFF	OFF	OFF
OFF	OFF	OFF	ON
OFF	OFF	ON	OFF
OFF	OFF	ON	ON
OFF	ON	OFF	OFF
OFF	ON	OFF	ON
OFF	ON	ON	OFF
OFF	ON	ON	ON
ON	OFF	OFF	OFF
ON	OFF	OFF	ON
ON	OFF	ON	OFF
ON	OFF	ON	ON
ON	ON	OFF	OFF
ON	ON	OFF	ON
ON	ON	ON	OFF
ON	ON	ON	ON
	OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON ON	OFF OFF OFF OFF OFF OFF OFF ON ON OFF ON ON ON ON ON ON ON ON ON ON ON ON	OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF ON OFF OFF ON OFF OFF ON OFF OFF ON ON OFF ON ON OFF ON OFF ON OFF OFF ON OFF ON ON ON OFF ON ON OFF ON ON OFF ON ON OFF ON ON OFF

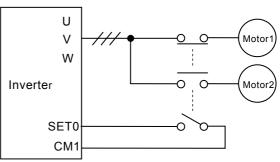


(2) Bit operation

It is possible to set multi-speed 1 to 5 by assigning 32 to 38 (SF1-SF7) to the intelligent input terminals. Set frequency SF1-SF7 to A021-A027.

Multi-spe ed	SF7	SF6	SF5	SF4	SF3	SF2	SF1
0 speed	OFF						
1 speed	×	×	×	×	×	×	ON
2 speed	×	×	×	×	×	ON	OFF
3 speed	×	×	×	×	ON	OFF	OFF
4 speed	×	×	×	ON	OFF	OFF	OFF
5 speed	×	×	ON	OFF	OFF	OFF	OFF
6 speed	×	ON	OFF	OFF	OFF	OFF	OFF
7 speed	ON	OFF	OFF	OFF	OFF	OFF	OFF

When each terminal turns ON simultaneously, the lower number has priority. In order for the inverter to operate both the frequency and the RUN operation (FW,RV) must be applied.


Second/Fifth control function (SET0,SET1, SET2)

This control function is used when the Inverter is connected to two different types of motors. By assigning 50-52(SET0,SET1,SET2) to an intelligent input terminal and turning SET0-SET2 terminal ON/OFF you can switch between three different Inverter set-ups.

Select 1st - 5th control function while the Inverter is in the STOP condition.

Select 1 - 5 control function while the inverter is in the c		.101
The functions which can change with SET terminal		
F002/F202-F502:1 st / 2 nd - 5 th acceleration time	U	,
F003/F203-F503:1 st / 2 nd - 5 th deceleration time	V	I
A003/A203-F503:1 st / 2 nd - 5 th base frequency	v	vl
A004/A204-A504:1 st / 2 nd - 5 th max. frequency		
A020/A220-F520:1 st / 2 nd - 5 th multi-speed 0 setting	Inverter	
A042/A242-A542:1 st / 2 nd - 5 th manual torque boost		
A043/A243-A543:1 st / 2 nd - 5 th manual torque boost point	SET	I
A044/A244-A544:1 st / 2 nd - 5 th control system	CN	/1
A061/A261-A561:1 st / 2 nd - 5 th frequency upper limiter		
A062/A262-A562:1 st / 2 nd - 5 th frequency lower limiter		
A092/A292-A592:1 st / 2 nd - 5 th acceleration time 2		C
A093/A293-A593:1 st / 2 nd - 5 th deceleration time 2		
A094/A294-A594:1 st / 2 nd - 5 th two-stage adjustable speed	selection	
A095/A295-A595:1 st / 2 nd - 5 th two-stage acceleration frequ	Jency	
A096/A296-A596:1 st / 2 nd - 5 th two-stage deceleration frequ	Jency	
b012/b212-A512:1 st / 2 nd - 5 th electronic thermal level		
b013/b213-A513:1 st / 2 nd - 5 th electronic thermal character	istic selectio	n
b015-b020:1 st free electronic thermal		
b215-b220:2 nd free electronic thermal		
b315-b320:3 rd free electronic thermal		
b415-b420:4 th free electronic thermal		
b515-b520:5 th free electronic thermal		
b021/b221-b521:1 st / 2 nd - 5 th overload restriction		
b022/b222-b522:1 st / 2 nd - 5 th overload restriction level		
b023/b223-b523:1 st / 2 nd - 5 th overload restriction constant		
c041/c241-c541:1 st / 2 nd - 5 th overload restriction notice lev	el	
H003/H203-H503:1 st / 2 nd - 5 th motor capacity selection		
H004/H204-H504:1 st / 2 nd - 5 th motor pole selection		
H006/H206-H506:1 st / 2 nd - 5 th stabilized constant		

Display during setting isn't differentiated between the 1st - 5th control function . So confirm it in the state of ON/OFF of termnal. Even if 1st - 5th control is changed during run, it will not be active until the inverter is stopped.

Motor control	SET2	SET1	SET0
1	OFF	OFF	OFF
2	OFF	OFF	ON
3	OFF	ON	OFF
4	OFF	ON	ON
5	ON	OFF	OFF

Software lock mode selection(SFT)

This function is used to prevent changing data by mistake. When you want to use an intellignent input terminal, assign 15(SFT).

Below is the software lock code selection.

Relation code

b031: Software lock mode selection

C001-C008: Intelligent input terminal

Function code	Data	SFT terminal	Description
	00	ON/OFF	Write disable except for b031/write enable
	01	ON/OFF	Write disable except for b031,F001,A020,A220-A520 A021-A035,A038 / write enable
b031	02	-	Write disable except for b031
0031	03	-	Write disable except for b031,F001,A020,A220-A520 A021-A035,A038
	10	-	Write disable except for change mode during running (code list reference)

Force operation ope function(OPE)

This function is used to operate from the operator forcibly by on/off of an intelligent terminal when frequency and operation command is selected other than the operator. - Relation code

A002: Operation command selection C001-C008: Intelligent input terminal

Becoming the operation from the frequency and operation command that was selected by A001 and A002 if the signal is off, and becoming the frequency and operation command from an operator forcibly if the signal is on when the compulsion operation function is selected by an intelligent input selection.

When changed the operation command while driving, operation command is canceled and become stoppage at first.

Operation command from each command input the operation command once again as the stoppage at first for driving once again.

Set item	Function cord	Setting value	Contents
		01	Terminal
		02	Operator
Frequency setting selection	A001	03	RS485
		04	Option 1
		05	Option 2
		01	Terminal
	A002	02	Operator
Operation command selection		03	RS485
		04	Option 1
		05	Option 2
Intelligent input selection	C001-C008	31	OPE : Compulsion operation

b003: Retry wait time

b007: Frequency setting to match

Relation code

b088: Free-run stop selection

- b091: Stop mode selection
- C001-C008: Intelligent input terminal

This free-run stop function will operate when the FRS terminal is ON.

By operating the free-run stop (FRS) function, the inverter output is cut off.

This function is used when the motor is to be stopped by the use of

If you stop the motor with a machine brake while the inverter is

still outputting to the motor an over-current trip may occur.

The motor wills free wheel under its own momentum.

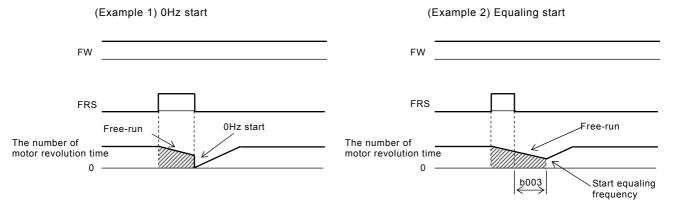
a brake, like an electromagnetic brake.

Assign 11(FRS) to an intelligent input terminal.

If you turn FRS terminal OFF the inverter will restart after the retry wait time b003 passes. However when the operation command selection A002 is set to control terminal (01), the inverter restarts

during free-running.

Free-run stop (FRS)


This function will only operate when the FW terminal is ON.

On restart it is possible to select 0Hz start or matching frequency start as output methods with the free-run stop selection b088. (Example 1), (Example 2)

When you set the frequency setting to match (b007) and the frequency detected is under this setting when the free×run stop is released, the inverter is restarted from 0Hz.

The setting of this function is valid for selection b091 on stopping.

Set item	Function code	Data	Description
Free run aton coloction	6000	00	0Hz start (Example 1)
Free-run stop selection	b088	01	Equaling frequency start (Example 2)
Retry wait time	b003	0.3-100.	Units: second Time until restart after FRS terminal is OFF. (This is also used for Instantaneous restart.)
Frequency setting to match	b007	0.00-1500.	Units: Hz (instantaneous stop, reference to item of insufficiency) This sets the level to match frequency. (Refer to item of instantaneous stop and restart.)

Start 0Hz regardless of the motor speed. On 0Hz start, the retry wait time is disregarded. When 0Hz start is used and the motor speed is still high there is the possibility of over-current trips. After FRS terminal is switched OFF, the Inverter reads the frequency of the motor and when it reaches the value in b007 the Inverter will begin to RUN again.

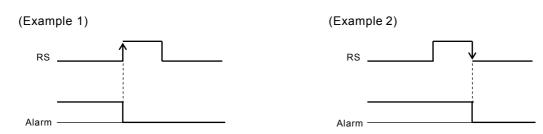
On frequency matching start if an over-current trip occurs, try extending the retry time.

Chapter 4 Explanation of function

4- 49

Chapter 4 Explanation of function

Reset (RS)


This function resets the inverter when a protective trip has occurred. The method of reset is to either push the STOP/RESET key on the digital operator or to switch the RS terminal ON.

To reset the inverter with the control terminal, assign 18(RS) to an intelligent input terminal.

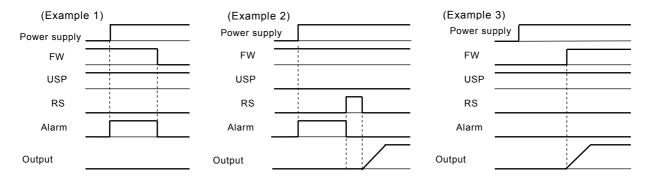
The RS terminal is valid only when the contact is set to NO.

intelligent input terminal. selection	
Reset frequency matching selection C103 selects whether the	gent input terminal
inverter restarts at 0Hz or the inverter matches the output frequency after the reset opera	ition is complete.
Reset selection C102 selects when the alarm signal is cancelled and whether it is valid c	or invalid in normal
operation.	

Set item Function code Data Description Units:seconds (Reference to items of instantaneous power b003 0.3-100. Retry waiting time failure or under-voltage) After reset, time until restart is tried. Units:Hz b007 0.00-1500. (Reference to items of instantaneous stop/ Frequency setting to match under-voltage) On ON signal, trip cancel (Example 1) 00 On normal, this is valid (output cuts off). On OFF signal, trip cancel (Example 2) C102 Reset selection 01 On normal, valid (output cuts off) On ON signal, trip cancel (Example 1) 02 On normal, this is invalid. (only trip cancel) Reset frequency matching 00 0Hz start C103 selection 01 Frequency matching start. (Example 3)

(Example 3) When 01 (frequency matching) is selected with reset frequency matching selection C103, it is also possible to operate frequency start on power ON again. And retry waiting time is disregarded at the time of the setting C103:00 (0Hz start).

- Relation code
- b003: Retry waiting time
- b007: Frequency setting to match
- C102: Reset selection
- C103: Reset frequency matching selection


Unattended start protection (USP)

The USP function is designed as a fail safe to prevent accidental starting of the Inverter if the RUN signal is ON when the power is restored to the Inverter.

When this function worked E13 is displayed. Either resetting the Inverter or turning the RUN signal OFF can clear the trip

This function is able to disarm when the operation command is turned off. (Example 1)

If the trip is cancelled while the RUN signal is still ON then the inverter will restart automatically. (Example 2) When the operation command is turned on after the power supply input, the inverter drives normal. (Example 3) Assign 13(USP) to an intelligent input terminal. Unattended start protection is shown as follows;

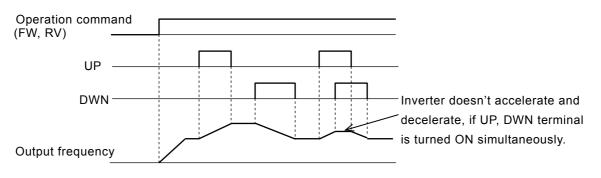
UP/DOWN selection(UP,DWN)

The Inverter output frequency can be changed with the UP and DWN intelligent input terminals.

Assign 27(UP) and 28(DWN) to two of the intelligent input terminals 1-5.

C101: UP/DOWN memory selection C001-C008: Intelligent input terminal

Relation code


This function is valid only when the frequency command selection A001 is set to 01 or 02. However, when 01 (control terminal) is set, this can only be used for multi-speed operation.

This function will not operate when the external analog frequency command or the jogging operation is used. Acceleration time operates according to F002, F003/F202-F502, F203-F503 when UP/DWN terminal is ON. To change 1st /2nd -5th control, assign 50(SET0)/51(SET1)/52(SET2) to an intelligent input terminal, change

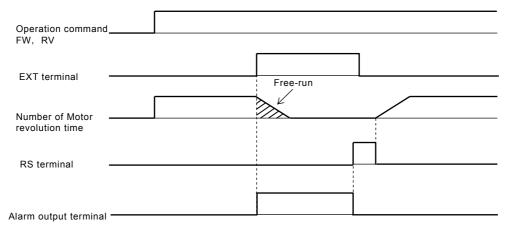
with SET0/SET2 terminal.

It is possible for the Inverter to retain the frequency setting value from the UP/DWN terminals. Parameter C101 switches the memory ON or OFF. It is also possible to clear the memory and return to the original set frequency. Assign 29(UDC) to an intelligent input terminal and switch it on to clear the memory.

Function code	Data	Description
00 C101		This will not memorize the frequency command adjusted with UP/DWN. When power is turned ON again, set value is returned to the value before it was adjusted with UP/DWN.
	01	This memorizes the frequency command adjusted with UP/DWN. When power is turned ON again, set value is kept the value after it was adjusted with UP/DWN.

C001-C008: Intelligent input terminal

Relation code


External trip (EXT)

This function can be used to force the Inverter into a trip situation which is Switched by an external input, i.e. PLC or relay contact.

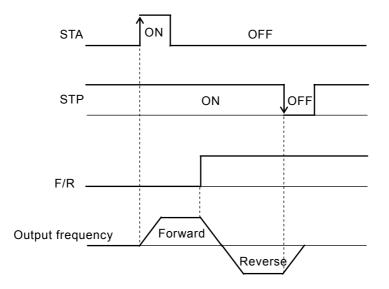
When the EXT terminal is switched ON, the inverter trips on an E12 error and the output switched OFF. Assign 12(EXT) to an intelligent input terminal.

The trip will not be canceled when the terminal is turned OFF.

To cancel the trip, the reset signal must be applied or the Inverter switched OFF and ON again at the supply.

3 Wire input function(STA,STP,F/R)

This function is used when a momentary push start/stop control is required.


Relation code

C001-C008: Intelligent input terminal

Set the operation command selection A002 to control terminal (01).

Assign 20 (STA), 21 (STP) and 22 (F/R) to three of the intelligent input terminals, and the operation becomes possible as follows. When the terminal is assigned STP terminal, FW terminal and also RV terminal become invalid. If all three inputs are not assigned this function will not operate.

The FW terminal and RV terminal become redundant when the 3 wire control is assigned to the intelligent input terminals. Output from the 3 wire control terminal is as follows;

Intelligent output terminal setting

Any of the following functions can be assigned to the intelligent

output terminals (11 - 15) or the alarm relay.

Both intelligent output terminals 11 - 15 and the alarm relay are all relay outputs.

All three output relays can be selected to be either NO or NC (a or b).

Relation code -

C021-C028 : Intelligent output terminal C026 :Alarm relay output terminal setting

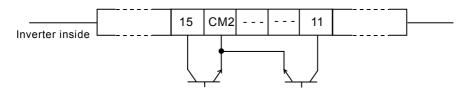
Data	Description	Reference item	Page
00	RUN: Signal during run	Signal during run	4-53
01	FA1: Constant speed arrival signal	Frequency arrival signal	4-54
02	FA2: Over setting frequency	Frequency arrival signal	4-54
03	OL: Overload advance notice signal	Overload limit	4-39
05	AL: Alarm signal	Protection function	-
06	FA3: Arrival signal for only setting frequency	Frequency arrival signal	4-54
08	IP: Instantaneous stop signal	Instantaneous power failure/	4-35
09	UV: Under voltage signal	under-voltage	4-55
11	RNT: RUN time over	RUN time over	4-55
12	ONT: ON time over	Power ON time over	4-55
13	THM: Thermal caution	Electric thermal function	4-37

Intelligent output terminal a/b (NO/NC) selection

This sets the intelligent output terminal 11-15 and alarm relay output terminal contact condition to either NO or NC, (a or b). Each output is changeable individually. Relation code

C031-C035: Intelligent output 11-15a/b (NO/NC) selection C036: Alarm relay output a/b (NO/NC) selection

Both intelligent output terminals 11-15 and the alarm relay are all relay outputs.

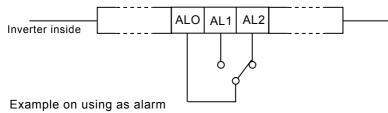

U			, , , , , , , , , , , , , , , , , , ,
Set item	Function code	Data	Description
Intelligent output 11-15	C031-C035	00	a contact(NO)
a/b(NO/NC) selection	0031-0035	01	b contact(NC)
Alarm relay output	C036	00	a contact(NO)
a/b(NO/NC)selection	0030	01	b contact(NC)

a contact: Close with {ON}, open with {OFF}.

b contact: Open with {ON}, close with {OFF}.

(1) Specification of the intelligent output terminals 11 - 15

Specification of the intelligent output terminals 11 - 15 is as follows;



C031× C035 Set value	Power supply	Output description
00	On	ON OFF
(a contact)	Off	-
01	On	ON
(b contact)	OII	OFF
	Off	-

Electric characteristic			
Between each terminal and CM2			
Under 4V			
(Voltage depression while signal is			
turned on)			
Permission Max. Voltage DC27V			
Permission Max. Current 50mA			

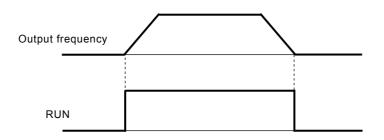
(2) Specification of the alarm relay output terminal

The specifications of the alarm relay output terminal is a changeover contact. Action is as follows.

	C036	Power	State of	State of	f output ninal		С
	Set value	source	inverter		AL2-AL0		
	00	0.7	On abnormal	Close	Open		AI
	00	On	On normal	Open	Close		
	(a contact)	Off	-	Open	Close		
	01 On (b contact) Off	On	On abnormal	Open	Close		AI
		OII	On normal	Close	Open		
		-	Open	Close	L		

Contact Specification		Resistor load	Inductor load
AL1-AL0	Maximum	AC250V, 2A DC30V, 8A	AC250V, 0.2A DC30V, 0.6A
AL I-ALU	Minimum	AC100V, 10mA DC5V, 100mA	
AL2-AL0	Maximum	AC250V, 1A DC30V, 1A	AC250V, 0.2A DC30V, 0.2A
ALZ-ALU	Minimum	AC100V, 10mA DC5V, 100mA	

Relation code


Signal during run (RUN)

This function is to provide an output signal when the Inverter is in a running condition.

C021-C025: Intelligent output terminal

Assign 00(RUN: signal during run) to an intelligent output terminal 11 - 15 or the alarm relay output terminal. The signal is still outputted when the dc braking operates.

Operation is as follows;

Frequency arrival signal (FA1, FA2, FA3)

When the output frequency arrives at the set frequency, an arrival signal is outputted.

Assign 01(FA1:constant speed arrival signal), 02(FA2:over setting frequency), 06(FA3: only setting frequency) to an intelligent output terminal 11-15 or the alarm relay output terminal.

Hysteresis frequency arrival signal is the following.

When ON: ON with 5 (Hz)

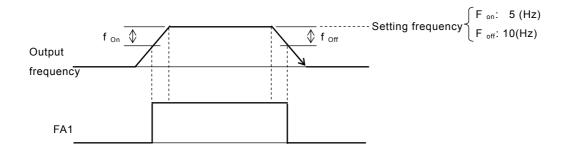
When OFF: OFF with 15 (Hz)

However in to set 06(FA3) case when inverter accelerate.

When ON: 5 (Hz)

When OFF: 15 (Hz)

When inverter decelerates


When ON: 5 (Hz)

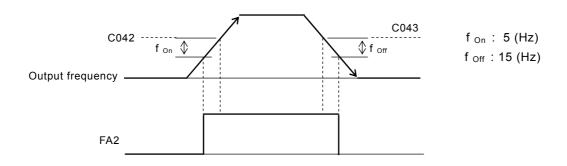
When OFF: 15 (Hz)

Set item	Function code	Data (Hz)	Description
Acceleration	C042	0.0	Arrival signal at acceleration is OFF.
arrival frequency 2	0042	0.01-1500.	Arrival signal at acceleration is ON.
Deceleration	0042	0.0	Arrival signal at deceleration is OFF.
arrival frequency 2	C043	0.01-1500.	Arrival signal at deceleration is ON.

(1) Output on constant speed arrival (01:FA1)

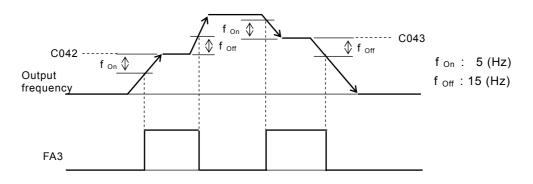
When the inverter arrives at the set frequency with frequency setting (F001, A020, A220-A520) or multi-speed (A021-A035), the output relay is switched.

Relation code


C021-C025: Intelligent output terminal

C042: Acceleration arrival frequency

C043: Deceleration arrival frequency


(2) Output over setting frequency (02:FA2)

When the output is over the arrival frequency set in C042, C043 on adjustable speed time, the output relay is switched.

(3) Output setting frequency (06:FA3)

The signal is switched only when the output frequency matches the arrival frequency set in C042, C043 on adjustable speed time.

RUN time / power ON time over (RNT/ONT)

When the accumulated operation time reaches or is over the setting time in b034, RUN time/power ON time over (RNT/ONT) output is switched.

Relation code b034: Warning time level C021-C025: Intelligent output terminal C026: Alarm relay output terminal d016: Accumulation time monitor during RUN d017: Power ON time monitor

Function code	Data	Description
	0.	Don't operate.
b034	19999.	Set by 10-hour unit.
	1000-6553	Set by 100 hours unit. (100000 $ imes$ 655300 hours)

(1) Run time over (RNT)

Assign 11(RNT) to an intelligent output terminal 11 - 15 (C021 - C025) or the alarm relay output terminal (C026).

Set ON time level with b034.

(2) Power ON time over (ONT)

Assign 12(ONT) to an intelligent output terminal 11 - 15 (C021 - C025) or the alarm output terminal, (C026).

Set ON time level with b034.

Alarm code output (AC0 - AC3)

This is the function that inverter outputs trip factor as signal. When 01(3bit) or 02(4bit) is selected in alarm code selection, C021 - C025 C062

- Relation code —

: Intelligent output selection : Alarm code selection

intelligent output terminal , 11-13 or 11-14 compulsorily is outputted in alarm code.

Alarm code output is the following below.

Intelligent output terminal			minal		In 4bit code selection In 3bit code selection		bit code selection
14 AC3	13 AC2	12 AC1	11 AC0	Factor code	Contents of trip	Factor code	Contents of trip
0	0	0	0	Normal	Normal	Normal	Normal
0	0	0	1	E01-E03, E04	Over current protection	E01-E03, E04	Over current protection
0	0	1	0	E05	Overload protection	E05	Overload protection
0	0	1	1	E07,E15	Over voltage Power source over voltage protection	E07,E15	Over voltage Power source over Voltage protection
0	1	0	0	E09	Lack voltage protection	E09	Lack voltage protection
0	1	0	1	E16	Instantaneous power× failure protection	E16	Instantaneous power failure protection
0	1	1	0	E30	IGBT error	E30	IGBT error
0	1	1	1	E06	Braking resister overload protection	_	-
1	0	0	0	E08,E11, E23	EEPROM error, CPU error, GA error	_	-
1	0	0	1	E10	CT error	-	-
1	0	1	0	E12,E13, E35,E36	External trip, USP error, thermistor error, brake abnormal	-	-
1	0	1	1	E14	Ground fault protection	-	-
1	1	0	0	_	_	-	-
1	1	0	1	E21	Power module temperature	-	-
1	1	1	0	E24	Phase failure protection	-	-
1	1	1	1	E50 - E79	RS485,option 1,2 error 0 - 9	-	-

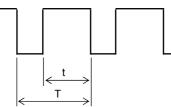
Set item	Function code	Setting range	contents
Alarm code selection	C062	00 01 02	Invalid 3bit code 4bit code

FM terminal

The FM control terminal can monitor the output frequency and output current. FM terminal is a PWM (Pulse Width Modulation) output. Relation code

C027: FM selection b081: FM adjustment

(1) FM selection


Select a signal to output from the following options.

When 03(digital frequency) is set a digital frequency counter meter is required.

Use an analog meter for all other output signals.

Function code	Data	Description	Full scale value
	00	Output frequency (Example 1)	0-Max. frequency(Hz)
	01	Output current (Example 1)	0-200%
	03	Digital output frequency (Example 2)	0-Max. frequency(Hz)
C027	04	Output voltage (Example 1)	0-100%
	05	Input electric power (Example 1)	0-200%
	06	Thermal load ratio (Example 1)	0-100%
	07	LAD frequency (Example 1)	0-Max. frequency(Hz)

(Example 1) Set value:00, 01, 04, 05, 06, 07

(Example 2) Set value: 03

Period T: change

Duty t/T : 50%fixed

Period T: constant (6.4m) Duty t/T : change

(2) FM adjustment

This function is used to calibrate a meter connected to the FM terminal.

Function code	Set range	Description
b081	0255.	Change one by one.

(Calibration methods)

(1) Connect meter to FM-CM1.

(2) Adjust b081 so that the meter is reading the same as the output frequency on your scale. (Example) When output frequency is 60Hz, change value of b081 so that meter is 60Hz.

AM terminal, AMI terminal

The AM terminal and the AMI terminal can monitor the output frequency or the output current.

The AM terminal has an analog output of 0-10V.

The AMI terminal has an analog output of 4-20mA.

(1) AM, AMI selection

Select a signal to output from the following options;

b080: AM adjustment C028: AM selection C029: AMI selection C086: AM offset adjustment

C087: AMI adjustment

C088: AMI offset adjustment

Set item	Function code	Data	Contents	Full scale value
		00	Output frequency	0-Max. frequency(Hz)
		01	Output current	0-200%
AM selection/	C028/C029	04	Output voltage	0-100%
AMI selection	0020/0029	05	Output electric power	0-200%
		06	Thermal load ratio	0-100%
		07	LAD frequency	0-Max. frequency(Hz)

(2) AM adjustment, AMI adjustment

This function is used to calibrate a meter connected to the AM and AMI terminal.

Set item	Function code	Data	Description
AM adjustment	b080	0255.	After offset adjustment with C086, adjust according to memory.
AM offset Adjustment	C086	0.0-10.0	Units: V
AMI adjustment	C087	0255.	After offset adjustment with C088, adjust according to memory.
AMI offset adjustment	C088	0.0-20.0	Units: mA

External thermistor

Temperature protection of the external machine is possible by the use of a Thermistor fitted to your motor.

Wire the thermistor between control terminals TH and CM1.

Set the following function according to the thermistor specification.

Relation code _____ b098: Thermistor selection b099: Thermistor error level

C085: Thermistor adjustment

Set item	Function code	Set value	Contents
		00	Invalid (No temperature protection by external thermistor)
Thermistor selection	b098	01	Valid normal temperature/factor resistance element (For PTC)
		02	Valid (For NTC)
Thermistor error level	b099	09999.	Units: OHM Set the resistance value of temperature for trip according to thermistor methods.
Thermistor adjustment	C085	0.0-1000.	Use this as gain adjustment.

Relation code

4- 59

Chapter 4 Explanation of function

Initialization setting

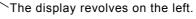
It is possible at any time to reinitialize the Inverter parameters back to their factory default. The trip history can also be cleared at any time, however, if problems occur it will be difficult to fault find without the trip history for reference.

Initialization details are as follows;

Set item	Function mode	Data	Description
		00	This clears only trip history.
Initialization		4 01	This only initializes setting value.
selection	b084		Setting value becomes the state on factory
Selection			forwarding.
		02	This clears trip history and initializes setting.
Initial data		00	Initializing setting for Japan.
selection	b085	01	Initializing setting for Europe
Selection		02	Initializing setting for America.

(Initialization methods)

After setting the above parameters, initialize as follows;


(1) Hold down the FUNC, UP andDOWN key and then press the STRkey. When the display starts to flashand rotate release all the keys.

(2) During initializingAbove display is for Japan.Other displays are below.

(3) When "d001" is displayed in the monitor, initialization is complete.

Relation code

b084: Initialization selection

b085: Initial data selection

Display selection

This function can be used to limit what the digital operator can display.

Relation code b037 :Display selection U001-U012 : User selection

Set item	Function code	Data	Description		
Display	b027	00	All display		
selection	b037	01	Function individual display (Display, no display by item set)(Example 1)		

(Example 1) When the Display selection (b037) is set to 01, only the programmed parameters are displayed.

No	Function to restrict display	Data	Code to be restricted display.	Note
1	A001	01	A005,A006,A011-A016,A101-A105, A111-A114,C081-C083,C121-C123	O,OI,O2 terminal function
2	A002	01,03,04,05	b087	Stop key function
	A019	00	4000 4005	
3	C001×C008	02,03,04,05	A028-A035	Multi-speed function
4	A044,A244-A544	02	b100-b113	Control methods
5	A051	01	A052-A059	DC braking
6	A094	01	A095-A096	2 stage adjustable
7	A294-A594	01	A295-A596,A296-A596	2 nd 2 stage adjustable
8	b013,b213,b513	02	b015-b020	Electric thermal characteristic
9	b021,b221	01,02	b022,b023,b222-b522,b223-b523	Overload restriction
10	b095	01,02	b090,b096	BRD function
11	C001-C008	50,51,52	F202-F502,F203-F503,A203-A503, A204-A504,A220-A520,A242-A542, A243-A543,A244-A544,A261-A561, A262-A562,A292-A592,A293-A593, A294-A594,A295-A595,A296-A596, b212-b512,b213-b513,b215-b515, b216-b516,b217-b517,b218-b518, b219-b519,b220-b520,b221-b521, C241-C541,H203-H503,H204-H504 H206-H506	2 nd -5 th control
12		11	b088	Free-run stop
13		18	C102	Reset
14		27,28,29	C101	UP/DWN
15	A004	00,01	A042-A043,A242-A542,A243-A543	Torque boost function
16	A244-A544	00,01	A241×A243	Torque boost function
17	A097	01,02,03	A131	Acceleration pattern constant
18	A098	01,02,03	A132	Deceleration pattern constant
19	B098	01,02	B099,C085	Thermistor function
20		02,06	C042,C043	Frequency arrival signal
21	C021-C025,C026	03	C040,C041	Overload advance notice
22		24,25	C045,C046	Frequency arrival signal

H003/H203-H503: 1st /2nd-5th allowable motor selection

H004/H204-H504: 1st/2nd-5th motor pole selection

Relation code

Motor constant

Set each constant according to the motor you use.

In case of using several motors in parallel, set the constant values that are closest to the total capacity of the belonging motor.

Reduced torque or instability may occur while using auto torque boost function if these settings are incorrect.

Stabilized factor

When the motor is hunting or unstable, this function can be adjusted to help stabilize the motor.

H006/H206-H506:1st/2nd-5th stabilized factor

When the motor is unstable, check the allowable motor selection (H003/H203) and motor pole selection (H004/H204-H504) with your motor. If their code data is different from your motor specification, set the right data. When R1 of usage motor is less than R1 of regular motor, raise the set value of H006/H206-H506 gradually. When you operate greater motor than rated capacity of inverter, lower the set value of H006/H206-H506.

The following two functions can also assist to reduce hunting or rattling of a motor.

- (1) Lower the carrier frequency (b083).
- (2) Lower the output voltage gain (A045).

Set item	Function code	Data	Description
Output gain	A045	20100.	Units :%
Output gain	A045	20100.	Lower this when hunting occurs.
Carrier	F 0 0 0	0 5 40 0	Units :kHz
frequency	b083	0.5-10.0	Lower this when hunting occurs.
Stabilized factor	H006/H206	0255.	Raise or lower when hunting occurs.

Operation selection on option error

When an add \times in option is the cause of a protective trip this function can be used to switch the trip facility off and allow the Inverter to carry on in it's operation.

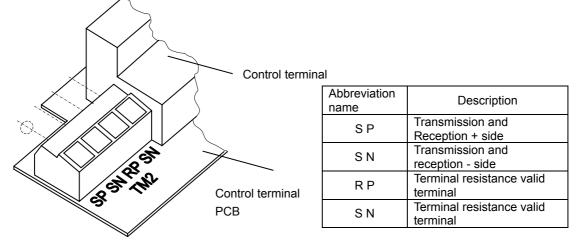
Relation code

P001: Option1 operation selection on error P002: Option 2 operation selection on error

Set item	Function code	Data	Description
Operation selection on optional error		00	TRP: inverter trip and output alarm when option error occurs.
	P001/P002	01	RUN: inverter ignores this and continues operation when
		01	option error occurs.

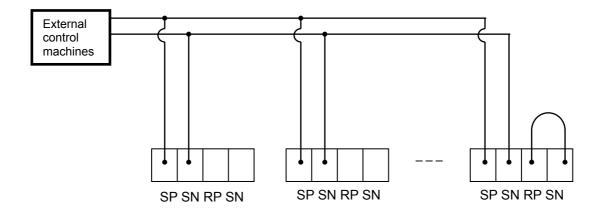
Communication function

Serial communication is possible from the Inverter to any external equipment using RS485 protocol. This function is built-in as standard and is controlled by the TM2 control terminals.


- Relation code
- A001: Frequency selection A002: Operation command selection
- C070: Data command
- C071: Communication transmission speed
- C072: Communication code
- C073: Communication bit
- C074: Communication parity
- C075: Communication stop bit C078: Communication waiting time

(1) Communication specification

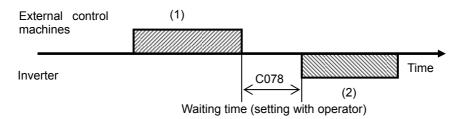
Item	Specification	Notes
Transmission speed	2400/4800/9600/19200 bps	Selection with
		operator
Communication methods	Half duplex communication methods	
Synchronizing methods	Direct current transmission	
Transmission code	ASCII code	
Transmission methods	Transmission from lower bit	
Communication interface	RS485	
Data bit	7/8 bit	Selection with
		Operator
Parity	No parity/even/odd	Selection with
		Operator
Stop bit	1/2 bit	Selection with
		Operator
Start methods	One-way start form by command of host side	
Waiting time	10-1000[ms]	Setting with
		operator
Connect form	1:N (N = Maximum 32)	Station number is
		selected with
		operator.
Error check	Overrun / Fleming / BCC / Vertical / Horizontal parity	


<RS485 port specification and connection>

Use TM2 of control terminal PCB for RS485 communication function.

Connect each inverter in parallel as shown below. It is necessary to short terminals RP and SN on the last inverter in the link (even if communication is to only one inverter the link should still be made).

By shorting between RP and SN, the terminal resistance is increased and controls the reflection of the signal.


(2) Setting

The following settings are required to operate RS485 communication.

Set item	Function code	Set value	Description				
		02	Operator				
Data commond	C070	03	RS485				
Data command	C070	04	Option 1				
		05	Option 2				
		02	Loop-back test				
Communication		03	2400 bps				
Communicating	C071	04	4800 bps				
transmission speed		05	9600 bps				
		06	19200 bps				
	C072		This assigns the station number of the				
Communication code		1 to32	inverter. This is used when you control more				
			than one simultaneously.				
Communication bit	C073	7	7 bit				
Communication bit	0073	8	8 bit				
	C074	00	No parity				
Communication parity		01	Even parity				
		02	Odd parity				
Communication bit	C075	1	1 bit				
		2	2 bit				
Communication waiting time	C078	0 to 1000	Units: ms Refer to it. (3)				

(3) Communication protocol

The method of the communication protocol is shown below in the time diagram.

The following is indicated.

(1): Frame transmitted from external control machines to the inverter

(2): Frame replied from inverter to the external control machines

Frame (2) from the inverter is a reply to frame (1) from the external control machine, the active output is not operated.

The commands are shown below;

Command list

Command	Command description	Advisability of all code	Notes
00	Forward / backward / stop command	0	
01	Setting of frequency command	0	
02	Setting of intelligent terminal state	0	
03	Collective reading of monitor data	×	
04	Reading of inverter state	×	
05	Reading of trip history	×	
06	Reading of 1 setting item	×	
07	Setting of 1 set item	0	
08	Returning of each set value to initial value	0	This doesn't operate unless b084 is set to (01 or 02). (Clear of the trip origin)
09	This checks whether set value can be Conserved to EEPROM or not.	×	
0A	This conserves set value to EEPROM	0	
0B	Recalculation of internal constant.	0	

Explanation of each command is the following.

(i) 00 command : This controls the forward, backward and stop command. (Set up A002 in 03 in the case that this command is used.)

Transmission frame

Frame format

STX	Code	Command	Data	BCC	CR
-----	------	---------	------	-----	----

	Explanation	Data size	Value
STX	Control code (Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32, and FF(broadcast)
Command	Transmission command	2 byte	00
Data	Transmission data	1 byte	(Note1) Reference
BCC	Bloc check code	2 byte	Exclusive OR of Code, Command and Data
CR	Control code	1 byte	CR (0x0D)
	(Carriage Return)	1 2 9 10	

Data	Description	Note
0	Stop command	
1	Forward command	
2	Reverse command	

(Note 1)

(Example) when you transmit forward command to code 01

(STX)|01|00|1|(BCC)|(CR) -

ASCIIconverter

▶ 02|30 31|30 30|31|33 30|0D

Reply frame

On normal reply: (4) - (i) Reference

On abnormal reply: (4) - (ii) Reference

(ii) 01 command: This is to set frequency command. (Set up A001 in 03 in the case that this command is used.)

Transmission frame

Frame format

	SIX	Code	Command	Data	BCC	CF	
	Explanation		Data	size	Value		
STX Control code (Start of TeXt)		1 byte	;	STX (0x02)			
Code Station number of inverter		2 byte	;	01-32, and FF (broadcast)			
Cor	Command Transmission command		2 byte	2 byte 01			
Dat	Data Transmission data (tenth ASCII code)		6 byte	;	(Note2) Reference		
BC	BCC Block check code		2 byte	;	Exclusive OR of Code, Command and Data		
CR		Control code (Carriage Return)		1 byte	;	CR (0x0D)	

(Note 2) when you set code 01 for 5Hz

(STX)|01|01|000500|(BCC)|(CR)

CTV Cada Command Data DCC CD

ASCII conversion

02|30 31|30 31|30 30 35 30 30|30 35|0D

(Note) The data is 100 times as big as set value.

(Example) 5(Hz)→ 500→ 000500 ASCII conversion

30 30 30 35 30 30

Reply frame

On normal reply: (4) - (i) Reference

On abnormal reply: (4) - (ii) Reference

(iii) 02 command: This sets the state of the intelligent terminals.

Transmission frame

BCC

CR

Frame	format
-------	--------

	STX	Cod	e Command	Data	BCC	CR			
-									
	Explanation					Data si	ze	Value	
	STX Control code (Start of TeXt)		1 byte		STX (0x02)				
	Code Station number of inverter		2 byte	;	01-32, and FF (broadcast)				
	Command Transmission command		Command Transmission command		2 byte	;	02		
	Data Transmission data		Transmission data		Transmission data 16 byte		е	(Note3) reference	
					Exclusive OR of Code, Command and				

(Note 3) Data (sixteenth) of intelligent terminal and contents

Control code(Carriage Return)

Block check code

(the details refer to intelligent input terminal function.)

Data (Hex)	Description	Data (Hex)	Description
000000000000000000000000000000000000000	FW: forward command	000000004000000	-
0000000000000002	RV: reverse command	0000000008000000	UP: remote operation Accelerating speed
000000000000004	CF1: multi-speed1(binary operation)	00000001000000	DWN: remote operation Decelerate speed
000000000000008	CF2: multi-speed2(binary operation)	000000020000000	UDC: remote operation data clear
0000000000000010	CF3: multi-speed3(binary operation)	00000004000000	-
000000000000020	CF4: multi-speed4(binary operation)	000000080000000	OPE: Force operation ope
000000000000040	-	00000010000000	SF1: multi-speed(bit run)
0000000000000080	DB: external DC control	000000200000000	SF2: multi-speed(bit run)
0000000000000100	-	0000000400000000	SF3: multi-speed(bit run)
000000000000200	2CH: two stage adjustable speed	00000080000000	SF4: multi-speed(bit run)
0000000000000400	-	0000001000000000	SF5: multi-speed(bit run)
000000000000000000000000000000000000000	FRS: free-run stop	00000200000000	SF6: multi-speed(bit run)
0000000000001000	EXP: external trip	0000004000000000	SF7: multi-speed(bit run)
000000000002000	USP: unattended start protection	000000800000000	OLR: overload restriction setting
0000000000004000	-	000001000000000	-
000000000000000000000000000000000000000	SFT: software lock (control terminal)	0000020000000000	-
000000000010000	AT: analog input voltage/current select	0000040000000000	-
000000000020000	-	0000080000000000	-
000000000040000	RS: reset	0000100000000000	-
000000000080000	-	0000200000000000	-
000000000100000	STA: 3 wire start	0000400000000000	LAC: LAD cancel
000000000200000	STP: 3 wire holding	0000800000000000	-
000000000400000	F/R: 3 wire forward	0001000000000000	-
0000000000800000	-	0004000000000000	SET0: 0bit control
00000000100000	-	00080000000000000	SET1: 1bit control
000000002000000	-	0010000000000000	SET2: 2bit control

2 byte

1 byte

Data (5) Reference

CR (0x0D)

(Example) When you make (forward), (multi-speed1) and (multi-speed2) active on inverter setting of code 01, the calculation of data is

(STX)|01|02|0000000000000000|(BCC)|(CR)

Reply frame

On normal reply: Refer to (4) - (i).

On abnormal reply: Refer to (4) - (ii).

(iv) 03 command: This reads monitor data collectively.

Transmission frame

Frame format

STX	Сс	de	Command	BCC	C	R Replay fr	ame
Explanation						Data size	Value
STX		Con	trol code(Start	tart of TeXt) 1 byte		1 byte	STX (0x02)
Code		Stati	ion number of	inverter	erter 2 byte		01-32
Command Transmission command			2 byte 03				
BCC	BCC Block check code			2 byte	Exclusive OR of Code, Command and Data (5) Reference		
CR Control code (Carriage Return)		1 byte	CR (0x0D)				

Frame format

STX Cod	e Data	BCC	CR
---------	--------	-----	----

	Explanation	Data size	Value
STX	Control code (Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
Data	Data	104 byte	(Note 4) reference
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code (Carriage Return)	1 byte	CR (0x0D)

(Note 4) Each monitor value

Monitor item	Units	Compe- titive rate	Data size	Explanation	
Output frequency	Hz	x100	8 byte	Tenth ASCII code	
Output current	Α	x10	8 byte	Tenth ASCII code	Ę
Revolution direction	-	-	8 byte	0: stop, 1: forward, 2:backward	Upper bite
-	-	-	8 byte	Invalid	er b
Intelligent input monitor	-	-	8 byte	*5) reference	ite
Intelligent output monitor	-	-	8 byte	*6) reference	
Frequency converting monitor	-	x100	8 byte	Tenth ASCII code	
Output torque monitor	%	x1	8 byte	Tenth ASCII code	
Output voltage monitor	V	x10	8 byte	Tenth ASCII code	ģ
Electric power monitor	kW	x10	8 byte	Tenth ASCII code	-lower bite
-	-	-	8 byte	(0000000) padding data	гb
RUN time monitor	h	x1	8 byte	Tenth ASCII code	ite
ON time monitor	h	x1	8 byte	Tenth ASCII code	

(Note 5) Intelligent input terminal monitor (Note 6) Intelligent output terminal monitor

Item	Data
FW (Forward terminal)	0000001
1 (1 st terminal)	0000002
2 (2 nd terminal)	00000004
3 (3 rd terminal)	8000000
4 (4 th terminal)	00000010
5 (5 th terminal)	0000020
6 (6 th terminal)	00000040
7 (7 th terminal)	0800000
8 (8 th terminal)	00000100

Item	Data
AL (Alarm terminal)	0000001
11 (11 th terminal)	0000002
12 (12 th terminal)	0000004
13 (13 th terminal)	8000000
14 (14 th terminal)	0000010
15 (15 th terminal)	0000020

(v) 04 command: This reads the state of the inverter.

Transmission frame

Frame format

STX	Code Command BCC CF	र	
	Explanation	Data size	Value
STX Control code(Start of TeXt)		1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
Command	Transmission command	2 byte	04
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

Replay frame

Г

Frame format

	STX	Code	Data	BCC	CR		
		Explana	ation			Data size	Value
STX Control code(Start of TeXt)		1 byte	STX (0x02)				
Со	de	Station number of inverter		2 byte	01-32		
Da	ta	Data on trip		8 byte	(Note7) reference		
вс	C	Block check code		2 byte	Exclusive OR of Code, Command and Data (5) Reference		
CR	ł	Control	code(Carria	age Retu	n)	1 byte	CR (0x0D)

(Note 7) The data to indicate status contents of inverter is constructed from the following three factors [A), B), C)].

Т

T

Data	Status A	Status B	Status C	00 (reservation)

Inverter status A)

Inverter status C)

Code	Status	С
00	Initial status	0
01	Vdc on waiting settlement	0
02	On stopping	0
03	On running	0
04	On FRS	0
05	On JG	0
06	On DB	0
07	On reading frequency	0
08	On retrying	0
09	On UV	0
10	On TRIP	1
11	On waiting reset	

Code	Status
00	
01	Stop
02	Deceleration speed
03	Constant speed
04	Acceleration speed
05	Forward
06	Reverse
07	Reverse from forward
08	Forward from reverse
09	Forward start
10	Reverse start

Inverter status B)

Code	Status
00	On stopping
01	On running
02	On tripping

(vi) 05 command: This reads trip history data.

Transmission frame

Frame format

STX	Cod	le	Command	BCC	CR			
Explanation				Data size	Value			
STX		Control code(Start of TeXt)			Control code(Start of TeXt) 1 byte STX (0x02)			STX (0x02)
Code		Station number of inverter		2 byte	01-32			
Comma	nd	Tra	ansmission co	mmand		2 byte	05	
BCC		Block check code				2 byte	Exclusive OR of Code, Command and Data (5) Reference	
CR	R Control code(Carriage Return)		1 byte	CR (0x0D)				

Replay frame

Frame format:

Tranc		it.		
STX	Code	e Data BCC CR		
Explanation			Data size	Value
STX	STX Control code(Start of TeXt)		1 byte	STX (0x02)
Code	Code Station number of inverter		2 byte	01-32
Data		Each monitor data on trip	440 byte	(Note 8) reference
BCC		Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	CR Control code(Carriage Return)		1 byte	CR (0x0D)

(Note 8) The monitor data (trip history) on trip memorizes the last six errors with an accumulated count number (8byte).

Accumulated	Trip history 1
count number	The history i

Trip history 6

Monitor item	Units	Magnifi cation	Data size	Notes	
Trip factor	-	-	8byte	Cord display	
Inverter status A)	-	-	8byte	04 command	5
Inverter status B)	-	-	8byte	Note 7 reference	Upper
Inverter status C)	-	-	8byte	Note / Telefence	
Output frequency	Hz	x10	8byte	Tenth ASCII code	
Accumulated RUN time	hour	x1	8byte	Tenth ASCII code	er
Output current	Α	x10	8byte	Tenth ASCII code	-ower
Current voltage	V	x10	8byte	Tenth ASCII code	Ľ
Power source ON time	hour	x 1	8byte	Tenth ASCII code	

(vii) 06 command: This reads 1 set item.

—	n frame													
Frame format STX Co		Code	Comm	nand	Parame	ter	BCC	CR						
	Explanation			D	Data size Value									
STX	Control of	code(Start	of TeXt)	1	byte	STX (0x02)							
Code	Station n	umber of	inverter	2	byte	01-32								
Command	Transmis	ssion com	mand	2	byte	06								
Parameter	Paramet	er numbe	r of data	4	byte	(Note	9)							
BCC	Block ch	eck code		2	byte	Exclu	sive OR	of Coo	de, Com	nman	d and	Data	a(5) Re	ferenc
CR	Control of	code(Carr	iage Retu	rn) 1	byte	CR (0	x0D)							
(Note 9	9) The rang	ge of para	meter to g	get,										
	F002-	, A001-, b	001-, C00	1-, H00	3-, P00	I- (F00	1 uses (01 com	mand.)					
Replay fran					-	,			,					
	format													
		STX	Code	ACK	Da	ta B	CC	CR						
On norm	lai repiy	017	Couc	AOR										
		•												
	Explanat		- f T - V (4)		ata size		000)							
STX		code(Start			byte	STX (,							
Code		umber of			byte	01-32								
ACK			nowledge		byte	ACK (
Data	· · ·	hth ASCII	code)		byte	(Note	/							-
BCC		eck code			byte			of Coo	de, Com	nman	d and	Data	a(5) Re	ferenc
CR			iage Retu		byte	CR (0	,							
(Note 10) V								-	-			nber	ſ.	
	The data	a of H003,	H203 (mo	otor cap	acity se	<u>_</u>	s indica	ted follo	owing co	ode d	lata.			r
ode data			00	01	02	03	04	05	06	07)8	09	10
									0.0			07	_	
	de (b085 =	= 00, 02)	0.2kW		0.4	-	0.75	-	1.5	2.2		-	3.7	
		• 00, 02)	0.2kW	0.3	7 -	- 0.55	0.75	- 1.1	1.5 1.5	2.2	2 3	- 5.0	3.7 -	4.0
ternal, USA mo J mode (b085 =		: 00, 02)			7 -						2 3	- 6.0 19	- 20	4.0 21
ternal, USA mo J mode (b085 = ode data	= 01)		0.2kW	/ 0.3 12	7 - 13	0.55	0.75 15 18.5	1.1	1.5	2.2	2 3		-	
ternal, USA mo J mode (b085 = ode data ternal, USA mo	= 01) de (b085 =		0.2kW 11	0.3 12 7.5	7 - 13 5 11	0.55 14	0.75 15	1.1 16	1.5 17	2.2 18	2 3 1 4	19	- 20	21
ternal, USA mo J mode (b085 = ode data ternal, USA mo	= 01) de (b085 =		0.2kW 11 5.5kW 5.5kW	0.3 12 7.5 7.5	7 - 13 5 11 5 11	0.55 14 15	0.75 15 18.5 18.5	1.1 16 22 22	1.5 17 30	2.2 18 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 =	= 01) de (b085 =	= 00, 02)	0.2kW 11 5.5kW 5.5kW Refe	2 0.3 12 7.5 7.5 7 to the	7 - 13 5 11 5 11	0.55 14 15 15	0.75 15 18.5 18.5	1.1 16 22 22	1.5 17 30	2.2 18 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 =	= 01) de (b085 = = 01)	= 00, 02)	0.2kW 11 5.5kW 5.5kW Refe	2 0.3 12 7.5 7.5 7 to the	7 - 13 5 11 5 11	0.55 14 15 15	0.75 15 18.5 18.5	1.1 16 22 22	1.5 17 30	2.2 18 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a	= 01) de (b085 = = 01) bnormal re	= 00, 02) eply: (4) -	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere	2 0.3 12 7.5 7.5 7 to the	7 - 13 5 11 5 11	0.55 14 15 15	0.75 15 18.5 18.5	1.1 16 22 22	1.5 17 30	2.2 18 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 =	= 01) de (b085 = = 01) bnormal re	= 00, 02) eply: (4) -	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere	2 0.3 12 7.5 7.5 7 to the	7 - 13 5 11 5 11	0.55 14 15 15	0.75 15 18.5 18.5	1.1 16 22 22	1.5 17 30	2.2 18 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior	= 01) de (b085 = = 01) bnormal re d: This sets n frame	= 00, 02) eply: (4) -	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere	2 0.3 12 7.5 7.5 7 to the	7 - 13 5 11 5 11 functior	0.55 14 15 15	0.75 15 18.5 18.5 please	1.1 16 22 22	1.5 17 30	2.2 18 37 37	2 3 1 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior	= 01) de (b085 = = 01) bnormal re	= 00, 02) eply: (4) - s 1 set iter	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n.	2 0.3 12 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5 7 7.5	7 - 13 5 11 5 11 functior	0.55 14 15 15 code list	0.75 15 18.5 18.5 please	1.1 16 22 22	1.5 17 30 30	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior	= 01) de (b085 = = 01) bnormal re d: This sets n frame format	= 00, 02) eply: (4) - s 1 set iter STX	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n.	0.3 12 7.5 7.5 7 to the nce	7 - 13 5 11 5 11 function	0.55 14 15 15 code list	0.75 15 18.5 18.5 please	1.1 16 22 22	1.5 17 30 30	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
iernal, USA mod J mode (b085 = ode data iernal, USA mod J mode (b085 = On a ii) 07 command Transmission Frame	e 01) de (b085 = 01) bnormal re t: This sets format format Explanat	= 00, 02) eply: (4) - s 1 set iter STX	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n.	2 0.3 12 7 7.5 7 7.5 7 to the ence Comr	7 - 13 5 11 5 11 function nand	0.55 14 15 code list	0.75 15 18.5 18.5 please	1.1 16 22 22	1.5 17 30 30	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmission Frame	e 01) de (b085 = 01) bnormal re t: This sets frame format Explanat Control of	eply: (4) - s 1 set iter STX tion code(Start	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n. Code	2 0.3 12 7 7.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 - 13 5 11 5 11 functior nand nand byte	0.55 14 15 code list Parame Value STX (0.75 15 18.5 18.5 please eter	1.1 16 22 22	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior Frame STX Code	e 01) de (b085 = 01) bnormal re trame format Explanat Control of Station r	eply: (4) - s 1 set iter STX tion code(Start	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n. Code of TeXt) inverter	0.3 12 7	7 - 13 5 11 5 11 functior nand ata size byte byte	0.55 14 15 code list Parame Value STX (01-32	0.75 15 18.5 18.5 please	1.1 16 22 22	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior Frame STX Code Command	e 01) de (b085 = 01) bnormal re t: This sets format Explanat Control of Station n Transmis	eply: (4) - s 1 set iter STX tion code(Start	0.2kW 11 5.5kW 5.5kW Refe (ii) Refere n. Code of TeXt) inverter mand	2 0.3 12 7 7.5 7 7.5 7 to the nce Comr 1 2 2 2	7 - 13 - 5 11 5 11 5 11 functior nand ata size byte byte byte	0.55 14 15 code list Parame Value STX (01-32 07	0.75 15 18.5 18.5 please eter 0x02) , FF(bro	1.1 16 22 22	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior Frame STX Code	e 01) de (b085 = 01) bnormal re t: This sets format format Explanat Control of Station r Transmis Paramet	eply: (4) - s 1 set iter STX tion code(Start number of ssion com er numbe	0.2kW 11 5.5kW S.5kW Refe (ii) Refere n. Code of TeXt) inverter mand r of data	2 0.3 12 7 7.5 7 to the ence Comr D 1 2 2 4	7 - 13 11 5 11 5 11 5 11 functior nand ata size byte byte byte byte byte	0.55 14 15 code list Parame Value STX (01-32	0.75 15 18.5 18.5 please eter 0x02) , FF(bro	1.1 16 22 22	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4	19 15	- 20 55	21 75
iernal, USA mod J mode (b085 = ode data iernal, USA mod J mode (b085 = On a ii) 07 command Transmissior Frame STX Code Command	e 01) de (b085 = 01) bnormal re t: This sets format Explanat Control of Station r Transmis Paramet Data of p	eply: (4) - s 1 set iter STX tion code(Start	0.2kW 11 5.5kW S.5kW Refe (ii) Refere n. Code <u>of TeXt)</u> inverter mand r of data	2 0.3 12 7 7.5 7 to the ence Comr D 1 2 2 4	7 - 13 - 5 11 5 11 5 11 functior nand ata size byte byte byte	0.55 14 15 code list Parame Value STX (01-32 07 (Note (Note	0.75 15 18.5 please eter 0x02) , FF(bro 9) 10)	1.1 16 22 22 Data	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4 4	9 5 5 	- 20 55 55	21 75
ternal, USA mod J mode (b085 = ode data ternal, USA mod J mode (b085 = On a iii) 07 command Transmissior Frame STX Code Command Parameter	e (b085 = 01) bnormal re t: This sets format Explanat Control of Station r Transmis Paramet Data of p (Tenth A	eply: (4) - s 1 set iter STX tion code(Start ssion com er numbe parameter	0.2kW 11 5.5kW S.5kW Refe (ii) Refere n. Code <u>of TeXt)</u> inverter mand r of data	2 0.3 12 7 7.5 7 7.5 7 to the nce Comr 1 2 2 4 8	7 - 13 11 5 11 5 11 5 11 functior nand ata size byte byte byte byte byte	0.55 14 15 code list Parame Value STX (01-32 07 (Note (Note Exclus	0.75 15 18.5 please eter 0x02) , FF(bro 9) 10)	1.1 16 22 22 Data	1.5 17 30 30 BC	2.2 18 37 37	2 3 1 4 4 4	9 5 5 	- 20 55 55	21 75

Control code(Carriage Return)
Reply frame

CR

On normal reply: (4) - (i) Reference

On abnormal reply: (4) - (ii) Reference

CR (0x0D)

1 byte

(ix) 08 command: This returns each set value to initial value.

This works in conjunction with initial selection (b084). If b084 is 00, the trip history is cleared.

Transmission frame

Frame format

STX Code Command	BCC	CR
------------------	-----	----

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32, FF(broadcast)
Command	Transmission command	2 byte	08
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

Replay frame

On normal reply: (4) - (i) Reference

On abnormal reply: (4) - (ii) Reference

(x) 09 command: This checks whether it is possible to store set value to EEPROM or not.

Transmission frame

Frame	e format				_
STX	Code	Command	BCC	CR	

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
Command	Transmission command	2 byte	09
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

Transmission frame

Frame format

STX Code	ACK	Data	BCC	CR
----------	-----	------	-----	----

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
ACK	Control code(ACKnowledge)	1 byte	ACK (0x06)
Data	Data	2 byte	Allowance with 01
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

On normal reply: (4) - (ii) Reference

(xi) 0A command: This stores the set value to the EEPROM.

Transmission frame

Frame format

	STX	Code	Command	BCC	CR		
Explanation				Data size	Value		
ST	х	Control code(Start of TeXt)				1 byte	STX (0x02)
Со	de	Static	Station number of inverter			2 byte	01-32
Со	mmand	Trans	mission comm	and		2 byte	0A
вс	CC Block check code		2 byte	Exclusive OR of Code, Command and Data (5) Reference			
CR	Control code(Carriage Return)		1 byte	CR (0x0D)			

Replay frame

On normal reply: (4) - (i) Reference

On abnormal reply: (4) - (ii) Reference

(xii) 0B command: This recalculates the internal motor constants.

This function is required when base frequency and parameter of H*** is changed by RS485

Transmission frame

Frame format

STX Code	Command	BCC	CR
----------	---------	-----	----

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
Command	Transmission command	2 byte	0B
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

Reply frame

On normal reply: (4) - (i) Reference On abnormal reply: (4) - (ii) Reference

(4) Acknowledge / Negative acknowledge response

(i) Acknowledge response
Reply frame

Frame format

STX	Code	ACK	BCC	CR
a-	<u> </u>			~ -

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
ACK	Control code(ACKnowledge)	1 byte	ACK(0x06)
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code(Carriage Return)	1 byte	CR (0x0D)

(ii) Negative acknowledge response

Reply frame

Frame format

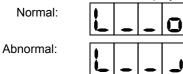
STX Code NAK	Error code	BCC	CR
--------------	------------	-----	----

	Explanation	Data size	Value
STX	Control code(Start of TeXt)	1 byte	STX (0x02)
Code	Station number of inverter	2 byte	01-32
NAK	Control code (Negative ACKnowledge)	1 byte	NAK(0x06)
Error code	Error contents of Communication	2 byte	(Note 11)
BCC	Block check code	2 byte	Exclusive OR of Code, Command and Data (5) Reference
CR	Control code (Carriage Return)	1 byte	CR (0x0D)

(Note 11) Error code list

Inverter doesn't reply on all code communication.

Error code	Contents		
01H	Parity error		
02H	Sum check error		
03H	Framing error		
04H	Overrun error		
05H	Protocol error		
06H	ASCII code error		
07H	Reception buffer overrun error		
08H	Reception time out error		
-	-		
-	-		
11H	Error for abnormal command		
12H	-		
13H	Practice disapproval error		
14H	-		
15H	-		
16H	Parameter abnormal error		
17H	-		


(6) Communication test mode

The communication test mode checks the communication line of RS485.

- (The communication test mode procedure)
 - (i) Please remove the wiring of terminal unit TM2 of the control terminal unit foundation, to do the loop back check.
 - (ii) Please set up the following with the operator of the inverter.

Please set up C071 (Communication transmission speed selection) to 02 (Loop Back Test).

- (iii) Shut the power supply of the inverter at first and please turn on the power supply once again. The check is started.
- (iv) When the check ends the display is as follows.

(v) Please push the reset button of the digital operator or copy unit. And, the setting of C071 is returned to the setting of an original request.

4.4 Protection function list

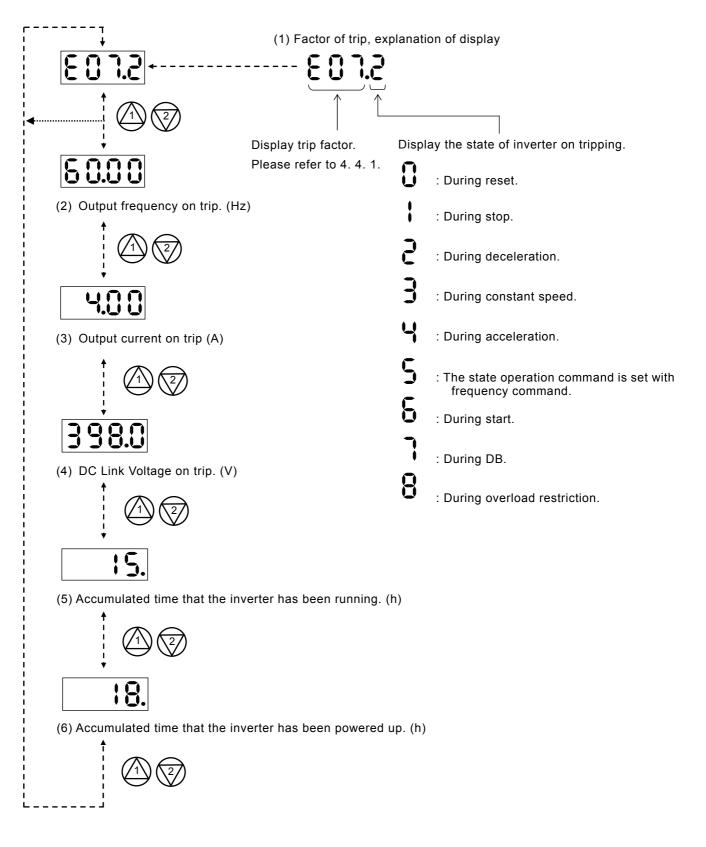
4.4.1 Protection function

Name	Description	Display of digital operator	Display of remote operator/ Copy unit ERR1***	
	Motor is restricted and decelerates	At constant Speed	E 0 I	OC. Drive
Over-current protection	rapidly, excessive current is drawn through the inverter and there is a	On deceleration speed	503	OC. Decel
·	risk of damage. Current protection circuit operates and the inverter output is switched off.	On acceleration speed	E 0 3	OC. Accel
		Other	E 8 4	Over. C
Overload protection (Note 1)	When the Inverter detects an overloa the internal electronic thermal overloa the inverter output is switched off.	d operates and	E 8 S	Over. L
Braking resistor overload protection	When BRD exceeds the usage regenerative braking resistor, the over-voltage circu the inverter output is switched off.	it operates and	808	OL. BRD
Over-voltage protection	When regenerative energy from the the maximum level, the over-voltage and the inverter output is switched off	circuit operates	E 0 7	Over. V
EEPROM error (Note 2)	When EEPROM in the inverter is sub noise or unusual temperature rises output is switched off.		803	EEPROM
Under-voltage	When the incoming voltage of inver control circuit can't operate correctly. The circuit operates and the inverter out off.	809	Under. V	
CT error	When an abnormality occurs to a detector) in the inverter, the inver switched off.	E 10	СТ	
CPU error	When a mistaken action causes an error CPU, the inverter output is switched of	E : :	CPU	
External trip	When a signal is given to the EXT i terminal, the inverter output is switche (on external trip function select)	513	EXTERNAL	
USP error	This is the error displayed when the ir restored while still in the RUN mode. (Valid when the USP function is selec		E 13	USP
Ground fault protection	When power is turned ON, this detect between the inverter output and the m	notor.	E 14	GND. FIt
Incoming over-voltage protection	When the incoming voltage is his specification value, this detects it for 6 the over-voltage circuit operates ar output is switched off.	0 seconds then nd the inverter	E 15	OV. SRC
Temporary power loss protection	When an instantaneous power failure than 15ms, the inverter output is swit the instantaneous power failure wait ti and the power has not been restored i a normal power failure. However, when the operation comm with restart selection the inverter of please be careful of this.	E 16	Inst. P-F	
Abnormal temperature	When main circuit temperature raises cooling fan, the inverter output is swit	153	OH. FIN	
Gate Array error	Communication error between CPU indicate	and gate array	E 2 3	GA
Open-phase protection	When an open-phase on the input su inverter output is switched off.		624	PH. Fail
IGBT error	When an instantaneous over-current the output the inverter output is switch the main devices.	ed off to protect	630	IGBT
Thermistor error	When the Inverter detects a high rest thermistor input from the motor the in switched off.		835	ТН

Name	Description	Display of digital panel • digital operator	Display of remote operator/ Copy unit ERR1***
Option 1 error 0-9	These indicate the error of option 1. You can realize the details each instruction manual.	E60 - E69	OP1 0-9
Option 2 error 0-9	These indicate the error of option 2. You can realize the details by each instruction manual.	E70 - E79	OP2 0-9
During under-voltage waiting	When the incoming voltage of the inverter has dropped, the inverter output is switched off and the inverter waits.		UV. WAIT
Communication error	When the incoming voltage of the operator has dropped, the inverter output is switched off and the inverter waits.		UV. WAIT

(Note 1) After a trip occurs and 10 seconds pass, restart with reset operation.

(Note 2) When EEPROM error **E 1 B** occurs, confirm the setting data again.


(Note 3) Protection function list of optional board.

(Note 4) If the inverter doesn't run normally or the inverter trips, check the dip switch and/or rotary switch setting on optional board.

(1)Digital-input option board (SJ-DG)

Dip s	switch	Rotary switch	S	Setting frequency		Acceleration and deceleration time setting		Torque limit setting	Position setting		
ΤY	/PE	CODE		Setting resolution							
Swite	Setting	0.01Hz	0.1Hz	1Hz	Rate	0.01sec	0.1sec	1sec	1%	1pulse	
1	2	code	0.01112	0.1112	1112	Nale	0.015ec	0.1500	1560	1 /0	ipuise
		0	0								
	PAC	1		0							
	(One time	2			0						
	input	3				0					
	mode at OFF)	4								0	
	011)	5									
BIN		6									0
(Binary input at		0					0				
OFF)		1	0					0			
1		2							0		
BCD (BCD		3					0				
input at	DIV	4		0				0			
ON)	(Dividing input	5							0	\cap	0
	mode at	6					0			\cup	U
	ON)	7			0			0			
		8							0		
		9					0				
		А				0		0			
		В							0		

4.4.2 Trip monitor display

4.4.3 Warning Monitor display

Relation code

d090 : Warning Monitor

Warning messages will appear when the data set is contradicting to others.

 $\label{eq:program lamp} \mbox{(PRG) turns ON during the warning (until the data is changed)}.$

Below is the description of the warnings.

Warning	Codes	<, >	Basic code	
I=1001/I=1201-501	frequency upper limiter A061/A261-A561	>		
I=1002/I=1202-502	frequency lower limiter A062/A262-A562	>	Maximum frequency	
l=1004/1=1204-504	Base frequency A003/A203-A503 (Note 1)	>	A004/A204-A504	
I=1005/I=1205-505	Output frequency F001, Multi stage speed 0 A020/A220-A520 (Note 2)	>		
I=1006/1=1206-506	Multi stage speed 1~15 A021~A035	>		
l=1012/1=1212-512	frequency lower limiter A062/A262-A562	>	frequency upper limiter	
l=1015/1=1215-515	Output frequency F001, Multi stage speed 0 A020/A220-A520 (Note 2)	~	frequency upper limiter A061/A261	
I=1016/I=1216-516	Multi stage speed 1~15 A021~A035	>	A001/A201	
I=1021/I=1221-521	frequency upper limiter A061/A261-A561	<	frequency lower limiter	
l=1025/1=1225-525	Output frequency F001, Multi stage speed 0 A020/A220-A520 (Note 2)	<	A062/A262	
l=1031/1=1231-531				
I=1032/I=1232-532	-1032/I=1232-532 frequency lower limiter A062/A262-A562		Starting fragmanau h082	
I=1035/I=1235-535	Output frequency F001, Multi stage speed 0 A020/A220-A520 (Note 2)	<	Starting frequency b082	
<u>-</u> 036	Multi stage speed 1~15 A021~A035	<		
<u>−</u> 085/ <u>−</u> 285	Output frequency F001, Multi stage speed 0 A020/A220-A520 (Note 2)	<>	Jump frequency 1/2/3 ±Jump width A063±A064	
l=¦086	Multi stage speed 1~15 A021~A035		A065±A066 A067±A068 (Note 1)	
<u>-</u> 091/ <u>-</u> 291	frequency upper limiter A061/A261-A561	>		
_ 092/ <u>-</u> 292	frequency lower limiter A062/A262-A562	~		
<u>-</u> 095/ <u>-</u> 295	Output frequency F001, Multi stage speed 0 A020/A220-A520	>	Free v/f frequency 7 b112	
_ 096	Multi stage speed 1~15 A021~A035	>	1	
	Free electronic thermal frequency 2, 3 b017, b019	<	Free electronic thermal frequency 1 b015	
<u>-</u> 120	Free electronic thermal frequency 1 b015	>	Free electronic thermal	
	Free electronic thermal frequency 3 b019	<	frequency 2 b017	
	Free electronic thermal frequency 1, 2 b015, b017		Free electronic thermal frequency 3 b019	

Warning is cleared when the setting fulfils the above condition.

Data will be changed automatically to the basic code.

(Note 1) The jump frequency will be automatically re-written to the lowest jump frequency (= Jump frequency – jump width)

• After a lapse of more than 10 minutes after turning off the input power supply, perform the maintenance and inspection.

Otherwise, there is a danger of electric shock.

• Make sure that only qualified persons will perform maintenance, inspection and part replacement. (Before starting the work, remove metallic objects from your person (wristwatch, bracelet, etc.)

(Be sure to use tools protected with insulation.) Otherwise, there is a danger of electric shock and/or injury.

5.1 Precautions for Maintenance/Inspection

5.1.1 Daily inspection

Every day before operation check the following;

- [1] Does the motor operate according to the settings?
- [2] Is there any trouble with the surroundings of the installation?
- [3] Is there any trouble with the cooling or ventilation system?
- [4] Is there any abnormal vibration or sound?
- [5] Are their any signs of over-current or discoloration?
- [6] Is their any unusual odor present?

Check the input voltage to the inverter by using a meter during running

- [1] Is the supply voltage constant?
- [2] Are all the phases of the supply balanced?

5.1.2 Cleaning

Make sure that the inverter is not dirty when operating. Wipe clean with a soft cloth and synthetic detergent.

(Note) Don't use solvents containing any of the following, acetone, benzene, toluene, alcohol etc. as they can cause melting of the inverter surface, peeling of paint. Never clean the display part of the digital operator with detergent or alcohol.

5.1.3 Regular inspection

Inspections should be regularly carried out on the parts that can't be inspected while the inverter is running.

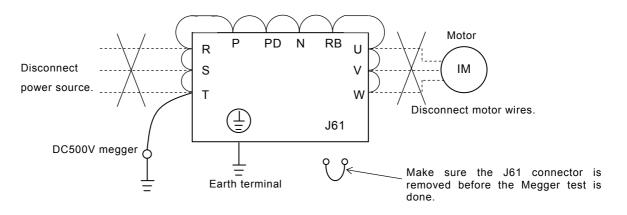
- [1] Is there any trouble with the cooling system? - Cleaning of air filter etc.
- [2] Check that all screw terminals and fixings are tight as they may loosen due to vibration or temperature change etc.
- [3] Is there any corrosion, damage to insulators?
- [4] Measurement of insulation resistance.
- [5] Check of cooling fan, smoothing capacitor, relay and exchange if necessary.

Chapter 5 Maintenance, Inspection

5.2 Daily inspection and regular inspection

Inspec-ti	Inspection	Increation item	Inspection			Increation methods	Decision standard	Motor	
on Parts	item	Inspection item	Daily	1	2	Inspection methods	Decision standard	Meter	
Whole	Surroundings	Check temperature of surrounding, humidity, dust.	0			Refer to 2.1 Installing.	Temperature range is between -10 and 40 degrees. No dew present and humidity is below 90%.	Thermometer , hygrometer, recorder	
	Whole equipment	Is there abnormal vibration, abnormal sound?	0			By watching, hearing.	No trouble.		
	Power voltage	Is main circuit voltage normal?	0			Measurement of inverter terminal R, S, T phase voltage	Within alternating voltage allowable change.	Tester, digital multi-meter	
	Whole	(1)Megger check Between circuit terminal and earth terminal (2)Are all screws terminals tight? (3)Is there any sign of over-voltage? (4)cleaning		0 0 0	0	(1)After you remove connector J61 from inside the inverter Take out the wiring of input/output of inverter main circuit terminal and control terminal, measure beween parts shortened terminal R,S,T,U, V,W,P,PD,N,RB and earth terminal with megger. (2)Incremental clamping. (3)Watch.	(1)To be over 5M ohm. (2)(3) No abnormality .	DC500V class megger	
	Connection conductor/ electric line	(1)Is there warp in conductor?(2)Is there any damage of coating of wires?		00		(1)(2) By watching	(1)(2) No abnormality		
Main	Terminals	Is there any damage?	L	0		By watching.	No abnormality.	<u> </u>	
circuit	Inverter parts Converter parts	Resistance check Between each Terminal.			0	Take out connect of inverter, measure terminal between R,S,T and P,N, between U,V,W and P,N with tester x 1 ohm range.	Refer to check method of 5.5 inverter, converter parts.	Analog form tester	
	Smoothing capacitor	(1)Is there any liquid?(2)Does relief valve come out? Is there any swell?				(1),(2) By watching.	(1),(2) No abnormality	Capacity meter	
	Relay	(1)Is there abnormal sound in operation?(2)Is there damage to the contacts?		00		(1)By hearing (2)By watching	(1) No abnormality (2) No abnormality		
	Resistor	 (1)Is there any crack, discoloration of resistance insulator. (2)Confirm existance of breaking of wire. 		0 0		(1)By watching.cementing resistance. Curl type resistance. Take out connection to other side, measure it with tester.	(1)No abnormality Error to be within 10% of Display resistance.	Tester , Digital multi-meter	
Control circuit Protec- tion circuit	Operation check	 (1)Confirm balance of each output phase voltage with inverter single operation. (2)Operate sequence protection moving test. And no abnormality. 		0 0		 Measure inverter output terminal U,V,W phase voltage. Short or open protection circuit output of inverter. 	 (1)Phase voltage balance 200v/400v class is within 4V/8V. (2)On sequence, to operate abnormality. 	Digital multi-meter, rectification type voltmeter	
Cooling system	Cooling fan	 (1)Is there abnormal vibration, abnormal sound? (2)Is there loosening of connecting parts? 	0	0		(1)Revolve by hands in the state of tone-on idle.(2) By watching.	(1)Revolving smooth. (2)No abnormality.		
Display	Display	(1)Is the LED lamp illuninated? (2) Cleaning.	0	0	<u> </u>	 (1)Lamp indicates lamp on operator. (2) Cleaning with cloth. 	(1)Confirm light.		
	Meter	Is direction value Normal?	0	0		Confirm indication value of board meter.	Satisfy normal value, control value.	Voltage meter, current meter	
Motor	Whole	 (1)Is there abnormal signal,abnormal sound? (2)Is there any abnor-mal odour? 	0 0			 (1)By hearing, feeling, watching. (2)Abnormal odour from overheat, damage etc. Confirmation. 	(1)(2) No abnormality.		
	Inslated resistance	(1)Megger check (terminal collection - earth terminal)			0	Remove connection to U,V and W and disconnect motor wiring.	(1) To be over 5M ohm.	DC 500V Megger	

(Note) Lifetime of the capacitors depends on the ambient temperature.


Chapter 5 Maintenance, Inspection

5.3 Megger test

When executing a megger test on the inverter remove all wires to R, S, T, PD, P, N, RB, U, V and W. Do not use a megger or buzzer on the control circuit only use a digital multi-meter. (Megger Voltage 500V DC)

Execute megger test of main circuit after the J61 connector has been removed. Short terminals of R, S, T, PD, P, N, RB, U, V and W.

After the megger test is complete, reconnect the J61 connector as before.

5.4 Withstand Voltage test

Never perform a withstand voltage test on the inverter.

The inverter main circuit uses semiconductors. Semiconductors can deteriorate when a withstand voltage test is performed.

5.5 The method to check Inverter, converter part

A test is possible to check quality.

(Preparation)

- [1] Take out the power lines (R, S and T) connected to the inverter, the motor connection lines (U, V and W) and the regenerative control resistance (P and RB).
- [2] Prepare tester. (Using range of 1 ohm resistance measure range.)

(How to check)

It is possible to check the quality of the charging state of the terminals R, S, T, U, V, W, RB, P and N of the inverter and the pole of the tester by measuring the charging state.


- (Note 1) Before you measure the voltage between P and N with DC current range, confirm that the smoothing capacitor is discharged fully, execute checks.
- (Note 2) Almost infinite value is indicated on no conducting.

With the effect of the smoothing capacitor, the inverter conducts instantly and an infinite value isn't indicated. Ohm-number 10 ohms is indicated on conducting.

The values indicated will not be exactly the same for each terminal, however they will be very close together. If there is a significant difference a problem may exist.

		Pole of tester			
		\oplus	Θ	Measure value	PD P RB
		(Red)	(Black)	value	Converter OOO
	D1	R	PD	No-conduct	TR1 TR2 TR3
Converter		PD	R	Conduct	
	D2	S	PD	No-conduct	
		PD	S	Conduct	
	D3	Т	PD	No-conduct	
		PD	Т	Conduct	s v
	D4	R	N	Conduct	
		N	R	No-conduct	
	D5	S	N	Conduct	
		N	S	No-conduct	
	D6	Т	N	Conduct	
		N	Т	No-conduct	D4 D5 D6
	TR1	U	Р	No-conduct	TR4 TR5 TR6
		Р	U	Conduct	''N '
	TR2	V	Р	No-conduct	
		Р	V	Conduct	
L	TR3	W	Р	No-conduct	
Inverter		Р	W	Conduct	
nve	TR4	U	N	Conduct	
		N	U	No-conduct	
	TR5	V	N	Conduct	
BR part		N	V	No-conduct	
	TR6	W	N	Conduct	
		N	W	No-conduct	
		RB	Р	No-conduct	
	TR7	Р	RB	Conduct	
		RB	N	No-conduct	
		Ν	RB	No-conduct	

5.6 Capacitor Life Curve

(Note 1)

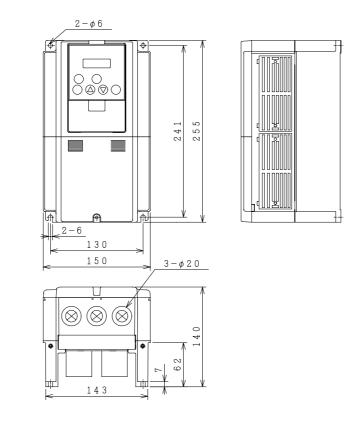
Ambient air temperature means the surrounding temperature of the inverter. In case the inverter is installed in a cabinet, ambient air temperature is the temperature of the internal air of the cabinet.

(Note 2)

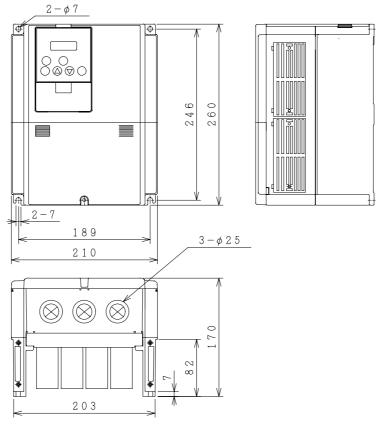
DC bus capacitors are recommended to be replaced every 5 years. And if the inverter is used in a worse condition, this recommended replacing period is reduced.

Chapter 6 Specification

6.1 Standard specification list

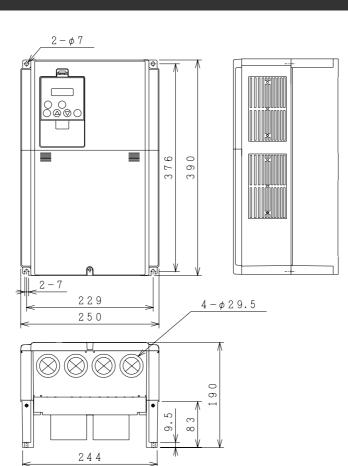

(1) 200V class

	(1)	200V class															
Inverte	er Model		-	-	SJH300- 2.5LF	SJH300- 3.7LF	SJH300- 5.5LF	SJH300- 8LF	SJH300- 11LF	SJH300- 16LF	SJH300- 22LF	-	-	-	-	-	-
		Notor 4P (kW)	-	-	1.5	2.2	3.7	5.5	7.5	11	15	-	-	-	-	-	-
Rated Alterna		200V	-	-	2.5	3.6	5.7	8.3	11.0	15.9	22.1	-	-	-	-	-	-
(kVA)	aung	240V	-	-	3.1	4.3	6.8	9.9	13.3	19.1	26.6	-	-	-	-	-	-
Rated input alternating voltage			Three-phase 200-240V(±10%)50Hz/60Hz Three-phase 200-240V (This corresponds to receving voltage.)														
	output volt		-		7.5	10.5	16.5	Three-phase 24	e 200-240V (32	This corresp 46	onds to recevent 64	/ing voltage.) -		1	1	-	
Naleu	Rated output current (A) Regenerative Control		-	-	7.5		cuit built-in	24	32	40	04	-	Regen	erative unit is	required	-	-
Stat-ing	Minimur	n Resistance	-	-	35	35	35	17	17	17	-	-	-	-	-	-	-
To be connected (OHM)						00											
	(2)	400V class															
Inverter Model		-	-	SJH300- 2.5HF	SJH300- 3.7HF	SJH300- 5.5HF	SJH300- 8HF	SJH300- 11HF	SJH300- 16HF	SJH300- 22HF	-	-	-	-	-	-	
Max. A	Applicadie N	Motor 4P (kW)	-	-	1.5	2.2	3.7	5.5	7.5	11	15	-	-	-	-	-	-
Rated	Alternating	400V	-	-	2.6	3.6	5.9	8.3	11.0	15.9	22.1	-	-	-	-	-	-
(kVA)	Allemating	480V	-	-	3.1	4.4	7.1	9.9	13.3	19.1	26.6	-	-	-	-	-	-
		nating voltage		Three-phase 380-480V (±10%) 50Hz/60Hz Three-phase 380-480V (This corresponds to receving voltage.)													
	output volt output cur				3.8	5.3	8.6	Three-phase 12	e 380-480V (16	This corresp 23	onds to rece 32	/ing voltage.)		1	1	1	1
Nateu		rative Control	-	-	5.0		cuit built-in	12	10	23	32	-	Regene	erative unit is	required		
Start-in	Minimur	m Resistance			100	100	70	70	50	50		-	-	_	_	_	_
	lobeco	onnected (OHM)	1	l						30		1			1	1	
	(3)	Common spe	ecification	n for 200)V/400V	class											
Invert	er Model		_	-	SJH300- 2.5	SJH300- 3.7	SJH300- 5.5	SJH300- 8	SJH300- 11	SJH300- 16	SJH300- 22	_	_	-	-	-	
			_	_	LF/HF	J.7 LF/HF	5.5 LF/HF	o LF/HF	LF/HF	LF/HF	LF/HF	-	_	_	-	-	-
	osures rol system									P20(NEMA1 modulation P							
	ut frequenc	cy range							One wave	0.1-1500Hz							
	uency accu						Digital c	ommand ±0.0					25±10⁰C)				
		lving power cy characteristic						Digital settir V/f option vari		Analog settin			a)				
	d fluctuatio							v/i option van		nsor-less vec		uuceu loique	<i>)</i>				
Over	load currer	it rate	150% for 60 seconds, 200% for 0.5 second														
Acce	leration/deo	celeration time	0.01-3600.0 seconds (straight or S-Curve on acceleration, deceleration is optional setting individually), On starting and decelerating by stop command, inverter operates under operation setting frequency. Or inverter operates with external input														
DC E	Braking				On Starting a		ing by stop o			; time, frequ			r inventer opi	erales will re.	kiemainput		
	Frequ-enc	Operator							Setting by	A	key.						
	y y	Volume				D	C 0 to 10V, -	10 to +10V (i				(input imped	ance 100 oh	nm)			
		Extend Signal			Setting with RS485 communication												
	Run/	Operator			15 (0)		0			Run/Stop	,						
Ħ	Stop	Volume		For	ward Run/Sto	p (1a conne	ct), reverse o	command is i		· ·	,	ection of 1a,	1b is possib	le), input of (3 wires is pos	sible.	
Input		Extend Signal	Use by sele	ectina termin	als from:				Setting with	n RS485 corr	imunication						
	Intelligent input terminal		Use by selecting terminals from; Reverse command (RV), multi-speed1-4 (CF1-CF4), external dc braking (DB), 2 nd acceleration (2CH), free-run stop (FRS), external trip (EXT), USP function (USP), software lock (SFT), analog input voltage / current / select (AT), reset inverter (RS), 3 wire run (STA), 3 wire keep (STP), 3 wire direction selection (F/R), remote control, up function (UP), remote control down function (DWN), remote control data clear (UDC), Compulsion operation(OPE) multi-speed bit 1-7(SF1-SF7), overload ristriction change (OLR), no assign (NO), 1 st -5 th control (SET0,SET1, SET2)														
	Thermisto	Thermistor input terminal		(DL 1)	-			-		1 terminal							
Output	Intelligent	output terminal	frequency(I	FA3), Instant	aneous stop	signal(IP), Ur	nder voltage	Frequency a signal(UV), To ce notice sign	orque limit(TF	RQ), RUN tim	e over(RNT)	, Thermal ca	ution(THM),	Arrival signal	for over setti	ng frequency	2(FA4),
0		monitor output						Analog volta	age output, a	nalog curren	t output, puls	se line output					
Displa	terminal y monitor		Output freq	uency, outp	ut current, fre	equency conv	version value	, trip history,	input output	terminal state	, input elect	ric power, ou	tput voltage,	motor torqu	e		
	function		V/f free sett Starting free	ing (7points) quency, Elec	, Upper / low tronic therma	er frequency al free setting	limitter, Fred , External sta	quency jump, art/end (frequ	Curve adjus ency/rate), A	table speed, nalog input s	Manual torc election, Trip	ue boost leve retry, Redu	el / Braking p	oint, Analog	meter adjustr		
Protec	Protection function		Over-curre	nt, over-volta		oltage, electi	ronic thermal	signal output, level, abnorr					aneous stop	, USP error,	open-phase	error, contro	l resistor
Frequency temperature/Preservation temperature/humidty Vibration 5.9 m/s ² (0.6G), 10-55Hz																	
Jsac	Vibration		5.9 m/s ² (0.6G), 10-55Hz														
	Using pla	ce					Under 1,	000m above		,	,	corrosive ga	sses dust)				
Paint color		Gray (Munsell 8.5YR 6.2/0.2)															
ption	Options Digital input option		Vector control with sensor														
0			4 column BCD, 16bit binary														
Other	Other options		Operator w installation	ith copy fund	tion, cable fo	or operator, b	oraking resist	or, regenerat	ive control ur	nit, alternating	g reactor, D.	C. reactor, El	VC Mains fil	ter, higher ha	armonic contr	ol unit, applie	ed control
Sche	matic mass (kg)	s [200V dass] [400V dass]	-	-	3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5	5 5	5 5	12 12	-	-	-	-	-	-
L	1.01	[100 V 0/4355]		-	0.0	0.0	0.0	0.0	5	5	14	-	-	· ·			


6.2 Dimension

SJH300-2.5-8LF

SJH300-2.5-8HF



SJH300-11,16LF/HF

Chapter 6 Specification

SJH300-22LF/HF

