


## **HITACHI INVERTER**

# HFC-VWS<sub>3</sub> E(H) SERIES

SERVICE MANUAL

ŵ

Ĵ

Ś

ئ



レ

Ŀ

÷

÷

- 1. Investigation
- 2. Kind of Printed Circuit Board
- 3. Use and level of checkpins
- 4. Trouble Shooting
  - 4.1. Trouble Shooting and message contents
  - 4.2. Contents of check points when trouble happens
  - 4.3. NVRAM failure
  - 4.4. How to return the setting to the initial setting
- 5. Measurement
  - 5.1. PWM output signal waveform from the Control Board
  - 5.2. Motor current signal
  - 5.3. Motor current waveform
  - 5.4. DC-current signal
  - 5.5. Output signal of Base Drive
  - 5.6. How to check Converter Modules
  - 5.7. How to check Inverter Modules
- 6. Appendix
  - 6.1. E-thermal function characteristics
  - 6.2. Block diagram of CFB
  - 6.3. Circuit diagram of printed board
  - 6.4. Sequence diagram
  - 6.5. Structure drawing
  - 6.6. Cabinet volume
  - 6.7. Selection of ventilating fan of inverter box
  - 5.8. How to measure the voltage, current and power
  - 6.9. Rushing current when power supply is turned on.

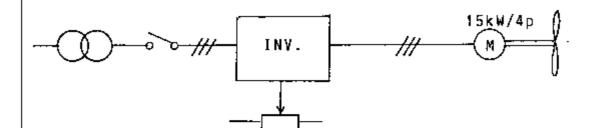
#### **1 INVESTIGATION**

Ù

Ż

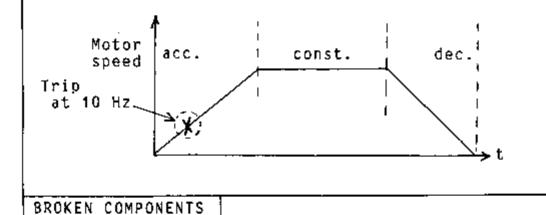
 $\boldsymbol{\nu}$ 

Ĵ


## When trouble happens!

- Investigate the customer's application and phenomenon and fill in them on the trouble report sheet.
- Fill in the setting data of customer on the data setting list.
- Investigate the customer's setting data whether they are proper for the application system.
- L-- Check the inverter Which parts have been damaged:See page
- \* The reason for the trouble is not always inverter's failure. We must check the system and inverter both of them.

WARRANTY REPORT TROUBLE REPORT


| Customer             |                 |  |
|----------------------|-----------------|--|
| Model Type           | HFC-VWS 22 HF3E |  |
| Serial No.(MFG.No.)  | SE 22 HF 3 82C  |  |
| Date of Purchase     | JAN.88          |  |
| Date of Installation | APR.88          |  |
| Date of Failure      | MAY.88          |  |

APLICATION Fan drive



DETAILS OF FAILURE

When the reference signal (0~10V) is feeded to the inverter, over current trip comes.



Power module

REMARKS

÷۵

Ċ

Ŵ

ŵ

### WARRANTY REPORT

## TROUBLE REPORT

| Customer             |  |
|----------------------|--|
| Model Type           |  |
| Serial No.(MFG.No.)  |  |
| Date of Purchase     |  |
| Date of Installation |  |
| Date of Failure      |  |

..

APLICATION

 $\checkmark$ 

. V

j,

÷

DETAILS OF FAILURE

BROKEN COMPONENTS

REMARKS

|   |                                               | Cân                                                               |
|---|-----------------------------------------------|-------------------------------------------------------------------|
|   |                                               | data                                                              |
| ÷ |                                               | KFC-VWS; inverter has many function; so that the setting data can |
|   | F                                             | the                                                               |
|   | HFC-VWS <sub>3</sub> Series DATA SETTING LIST | that                                                              |
|   | ž                                             | 3                                                                 |
|   | E                                             | i on:                                                             |
|   | Š                                             | unct                                                              |
|   | TA                                            | ny f                                                              |
|   | à                                             |                                                                   |
|   | ies                                           | hæs                                                               |
|   | Sa                                            | fer                                                               |
|   | ŝ                                             | UVE                                                               |
|   | ξ                                             | н<br>                                                             |
| Ð | ģ                                             | - M                                                               |
|   | Ŧ                                             | HFC                                                               |

be changed by customerg.

It is recommended to fill the setting data our the following data sheet for service, maintenance and investigation of trouble.

TYPE : LFC-VNS

Described on spec. Label on top cover

Monitor Mode

| - ուսեր<br>Հերկո | Monitor Kame                      | Tottial Diaplay        | Secting  | Setting<br>Date |
|------------------|-----------------------------------|------------------------|----------|-----------------|
| _                | Outpul frequency<br>displey       | ЕМ 000.0Н.             | 1        |                 |
| N                | Frequency<br>setting commund      | £s 000.0н;             | 1        | -               |
| m                | Frequency<br>commund method       | E-set-M Terbinal       | Tertinal |                 |
| प                | Uperation<br>commend method       | É/A5W Termigal         | lenterat |                 |
| \$               | Mator Fyeed<br>Aleptey            | EPN 4P 0000APM         |          |                 |
| 9                | Output current<br>display         | 1 1=000. 0K            | 1        |                 |
| ~                | Manual Torque<br>boort adjustment | <u>Y-8441 (04+(31)</u> | ī        |                 |
| - 20             | Output voltage<br>gaia adjustment | V-G.1. 100K            | 8        |                 |
| β.               | Jogging<br>Irequency<br>seiring   | <u></u>                | ¢.9      |                 |
| 10               | Fault display                     |                        | 1        |                 |
|                  |                                   |                        |          |                 |

4

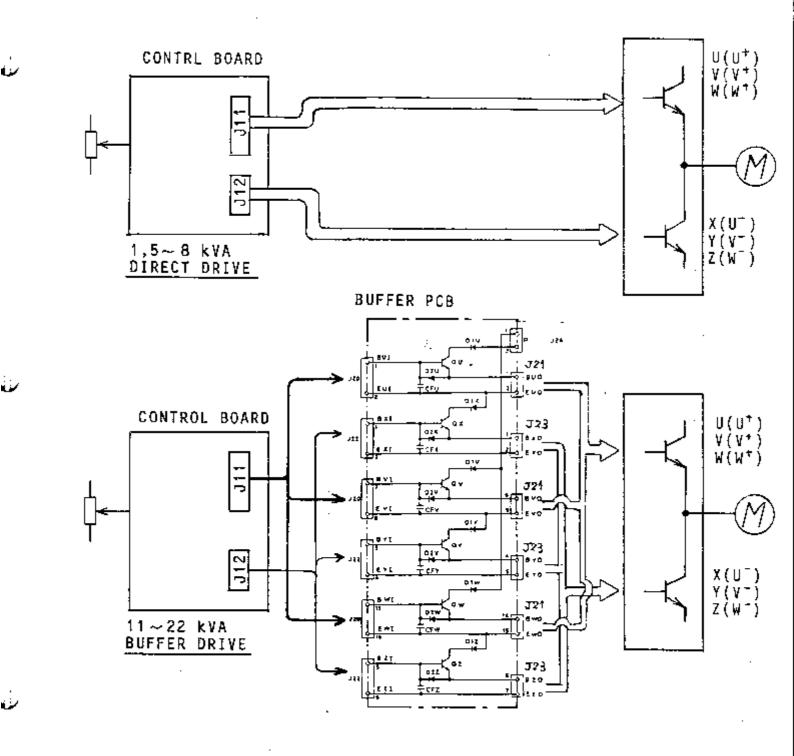
Ú

÷

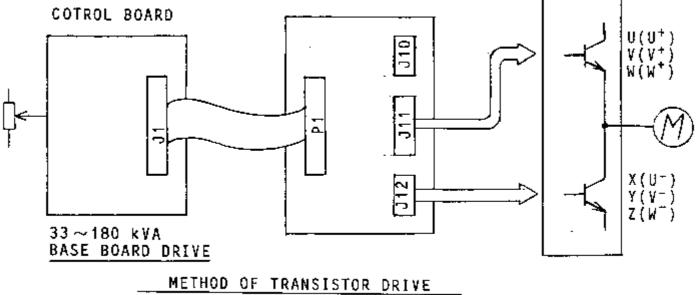
| utepter<br>Sequence | Function Hame                                                     | Puscijam  <br>Mode                    | Display<br>Contenia | Setting.          | Satting<br>Data       |
|---------------------|-------------------------------------------------------------------|---------------------------------------|---------------------|-------------------|-----------------------|
| -                   | V/F POLISIN BOLLINE                                               | <u>†</u> - 0 0                        | V I 1 - F C         | V71-VC<br>050-050 |                       |
| ~                   | Acceleration time sector                                          |                                       | 1-13))¥             | ę                 | ı                     |
| -<br>-              | Decaleración time autring                                         | <u></u>                               | DECEL-1             | 8                 |                       |
| 3                   | Manuaute frequency fine adjustment                                | <u> </u>                              | • F = 2 .           |                   |                       |
| 3                   | Starting frequency adjustment                                     | E - 0 -                               | • F b t n .         | 0.5               |                       |
| 4                   | Makimum frequency limiter acting                                  | 50-7                                  | H - L I M - F       | •                 |                       |
| ~                   | Miniaum (requency limiter metiang                                 | 90- <b>7</b>                          | 1 - N 1 7 - J       | -                 | -<br>-<br>-<br>-<br>- |
| •                   | Jump Erequency   delting                                          | <u> </u>                              | <u> </u>            | •                 |                       |
|                     | Jump trequency 2 metting                                          | 1 - D E                               | J L H F - F 2       | D                 |                       |
| 2                   | Jump (requency ] atting                                           | £ 0 - 7                               | 1 u k P - † 3       | -<br>-            |                       |
| Ξ                   | Mater moter adjustment                                            | D1-7                                  | C 7 - c b d e       | <b></b>           |                       |
| 12                  | Adjustment of fraquency stop<br>1364 at start                     | · · · · · · · · · · · · · · · · · · · | F. t. b. F.         | . P. 4            |                       |
| ū                   | Sultistage speed 1 mercang                                        | <u> </u>                              | Speed-L             | D                 |                       |
| 7                   | Tatube 2 pada strengtup                                           | ft-1                                  | 5 p e e d - 2       | 0                 |                       |
| 15                  | Zultterage speed 3 sector                                         | 11-7.                                 | 6 - b - s q 8       |                   |                       |
| 9T                  | DC breking trequency edjuctions                                   | - 1 0 2 - T                           | F-DCE               | -                 |                       |
| 17                  | DC braking power adjustant                                        | I I I I                               | . v - p C B         | 91                |                       |
| 11                  | AC bisking the solution.                                          | I - 1 1                               | 1 - b C B           |                   |                       |
| 19                  | Electric thereal level adjustment                                 | £-2)                                  | 4 - C M a F A       | 100               |                       |
| DZ.                 | Lineur/5+churaccar chrvad<br>accaleracten gelaction               | ţ-2 4                                 | A C C 1 1 1 4       | Libeer            |                       |
| 11                  | Libear/S-character curved<br>deceieration aetaction               | <u>-</u> -25                          | D 2 6 1 5 5 6       | Linger            |                       |
| ដ                   | Statt point frequency of external frequency setting               | 92-2                                  | F-START             | •                 |                       |
| :                   | End point frequency of externel<br>frequency metiling             | 12-1                                  | F - 1 H D           | a                 |                       |
| 72                  | Svitch selection                                                  | <u>T</u> - 2 B                        | I R D I T A S       | 1010000           |                       |
| 71                  | Overland kimit time countant<br>satukat                           | 0 F - 1                               | 2 N . C 0 P \$      | 1.4               |                       |
| 36                  | Automatic torque bogat adjuntant                                  | E-12                                  |                     | 93                |                       |
| 27                  | Stand-by the setting for restart<br>star intraction power failure | <u>-</u>                              | 175-8-7             | -                 |                       |

ممسا

ير في


ù

i.


| PCB | narre | for | WS3 | WWS3E | and | WASSEH |  |
|-----|-------|-----|-----|-------|-----|--------|--|
|     |       |     |     |       |     |        |  |

| <u>Series</u> | <u>: VW</u>        | \$3                                   |                     |                       | VWS3EH                                |                            |  |
|---------------|--------------------|---------------------------------------|---------------------|-----------------------|---------------------------------------|----------------------------|--|
| Use           | Control            | Base drive<br>/Buffer                 | Control             | Base drive<br>/Buffer | Control                               | Base drive<br>/Buffer      |  |
| 1.55          | $\sim$             |                                       | S3EL 1 SO           | · /                   | GEILISO                               | \                          |  |
| 2. 55         | X                  |                                       | S3EL2-3SO           | /                     | GE1L2-3SO                             |                            |  |
| 3. 55         |                    |                                       | ¥                   | Ϋ́Ϋ́Υ΄ / Ι            |                                       | \/                         |  |
| IL            | <u>\$3L1-1.5L0</u> |                                       | <u> </u>            |                       | \                                     | <u> </u>                   |  |
| 1. 5L         | 4                  |                                       | $\nabla$            |                       |                                       |                            |  |
| 2. SL         | S3L2LO             |                                       |                     |                       |                                       | <u> </u>                   |  |
| 3. 5L         | 53L3-5LO           |                                       |                     |                       |                                       |                            |  |
| <u>5, 5L</u>  | 4                  | /                                     |                     |                       |                                       |                            |  |
| <b>6</b> L    | \$3L8-11L0         | <u>\$388-22LO</u>                     |                     | Χ                     |                                       | X                          |  |
| <b>1</b> 1L   | ¥                  | 1                                     | V                   | $-\Delta$             | V                                     |                            |  |
| 16L           | 5 <u>3L16L0</u>    |                                       | Δ                   | -/                    | Δ                                     |                            |  |
| 2 <u>2</u> L  | \$3L22L0           | · · · · · · · · · · · · · · · · · · · |                     | / \                   |                                       | └ <u>/</u> ∖               |  |
| 33L           | \$3L33L0           | <u>\$3833LO</u>                       |                     |                       | //                                    |                            |  |
| 40L           | S3L40LO            | \$3 <u>840LO</u>                      |                     |                       | /\_                                   | $\downarrow / \rightarrow$ |  |
| 50L           | \$3150-75LO        | \$3850LO                              |                     | \·                    |                                       | /                          |  |
| 60L           |                    | \$3860LO                              | <u>∕</u> ∖i         | /                     | /\                                    | /                          |  |
| 75L           | 4                  | \$3875LO                              | <u>/ \</u>          | L                     | /                                     | V                          |  |
|               |                    |                                       |                     | · · · · · ·           |                                       | 1                          |  |
| 2. 5H         | $\leq$             |                                       | S3EL2-3HO           | $\searrow$            | GE1L2-3HO                             | $\searrow$                 |  |
| <u>3. 5H</u>  | $\leq$             |                                       | ¥                   | $ \rightarrow $       |                                       |                            |  |
| <u>5.5H</u>   | S3L5HO             |                                       | S3EL5HO             |                       | GEILSHO                               | $\vdash \nearrow$          |  |
| <u>8</u> H    | <u>\$3</u> L8HO    |                                       | S3EL8HO             |                       | GE1L8HO                               |                            |  |
| <u>11H</u>    | 53L11-16HO         | \$3B11-22HO                           | <u>S3EL11-16HC</u>  | 53811-22HD            | GE1L11-16HO                           | <u>  \$3811-22H</u>        |  |
| 16 <b>H</b>   | ¥                  | <b>└──</b>                            | •                   | ·                     | ¥                                     |                            |  |
|               | S3L22H0            | <u>↓</u>                              | S3EL22HO            | ¥                     | GE1L22HO                              | ¥                          |  |
| <u>33H</u>    | 53L33-40HO         | S3B33HO                               | GE1L33-40HO         |                       | GE1L33-40HO                           |                            |  |
| <u>40</u> H   | ¥                  | 53840-50HO                            | ¥                   | GE1840-50HC           |                                       | <u>GE1840-50</u>           |  |
| 50H           | S3L50-7 <u>5HO</u> | ↓ <u> </u>                            | GE1L50-75HO         |                       | GEIL50+75HO                           |                            |  |
| 60H           |                    | <u>\$3860-75H0</u>                    | <b>↓</b>            | GE1860-75HO           | · · · · · · · · · · · · · · · · · · · | GE1860-75                  |  |
| <u>75</u> H   |                    | ₩                                     | *                   | <b>↓</b> ♥            |                                       | *                          |  |
| <u>iaoh</u>   |                    |                                       | ļ. —                | ļ                     |                                       | ļ <u> </u>                 |  |
| 120H          |                    |                                       | ·                   |                       | · · ·                                 |                            |  |
| <u>150H</u>   |                    | ↓ ··                                  |                     | }                     |                                       |                            |  |
| <u>180H</u>   | · ·                |                                       | ļ . <u> </u>        |                       |                                       | ·                          |  |
|               | ··· <u></u> -      | <b> -</b>                             | <u> </u>            | <b>├───</b> ───       | <b> </b>                              | <b></b>                    |  |
| ļ             |                    | L                                     | <b> </b>            | t                     | i                                     | L                          |  |
| Inv.          | Japanese           | version                               | Europear<br>without | vesion                | European version<br>with GFP          |                            |  |

5



BASE DRIVE PCB

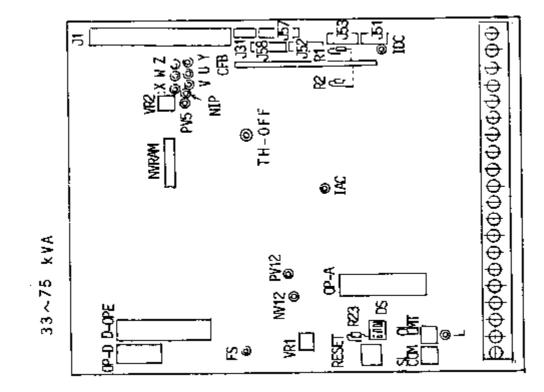


6

÷

### 3 USE AND LEVEL OF CHECKPINS

| Check<br>pin | Use and level                                                                                                       | Addres | s(Locati          | on)               |
|--------------|---------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------------|
| ·            | ·                                                                                                                   | ~22kVA | 33~75kVA          | 100kvA~           |
| P¥5          | Power source for dig.circuit<br>PV5-L:4.9~5.1 VDC                                                                   | 30     | 3E(L)<br>7G(B)    | 5E(L)             |
| PV12         | Power source for analogue circuit<br>PV12-L:11.76~12.24 VDC                                                         | 9 E    | 5B(L)<br>7G(B)    | 9D(L)<br>5G(B)    |
| NV12         | Power source for analogue circuit<br>NV12-L:-11.76~12.24 VDC                                                        | 3 A    | 5B(L)<br>7G(B)    | 7E(L)<br>6G(B)    |
| L            | Ground for analogue circuit                                                                                         | 1A,10A | 8A,2E(L)<br>7G(B) | 9E,1E(L)<br>5G(B) |
| AP5          | Power source for protection circuit AP5-AL:4.9~5.1 VDC                                                              | 8E     | 5F(B)             | 6H(L)             |
| AL           | Ground for AP5                                                                                                      | 8E     |                   | 6H(L)             |
| VDC          | Over voltage<br>VDC-AL :3.25 V (Trip level)                                                                         | 85     | 6F(B)             | 6H(L)             |
| P            | DC voltage of the intermidiate circuit<br>P-N:approx. 300VDC<br>max. 400VDC                                         | 6H     | 6F(B)             | 6J(L)             |
| N2           | DC current of main circuit<br>N2-N:1.3VDC (Trip level)                                                              | 7 H    |                   |                   |
| N            | Ground for P and N2                                                                                                 | 8H     | 6F(B)             | 7J(L)<br>5F(B)    |
| UL           | Ground for base circuit of U+<br>DP 700-UL: 6.5~9.5V *1) (1.5~75 kVA)<br>DP3100-UL:-6.5~9.5V (33 ~75 kVA)           | 2F     | 1F(B)             |                   |
| VL           | Ground for base circuit of V+<br>DP 80-VL: 6.5~9.5V *1) (1.5~75 kVA)<br>DP340-VL:-6.5~9.5V (33 ~75 kVA)             | 3E     | 2E(B)             |                   |
| WL           | Ground for base circuit of W+<br>DP 900-WL: 6.5~9.5V *1) (1.5~75 kVA)<br>DP3700-WL:-6.5~9.5V (33 ~75 kVA)           | 46     | 3E(B)             |                   |
| XL           | Ground for base circuit of X-(U-,V-,W-)<br>DP10(2-XL: 6.5~9.5V *1) (1.5~75 kVA)<br>DP4 (A-XL:-6.5~9.5V (33 ~75 kVA) | 3E     | 6A(B)             |                   |

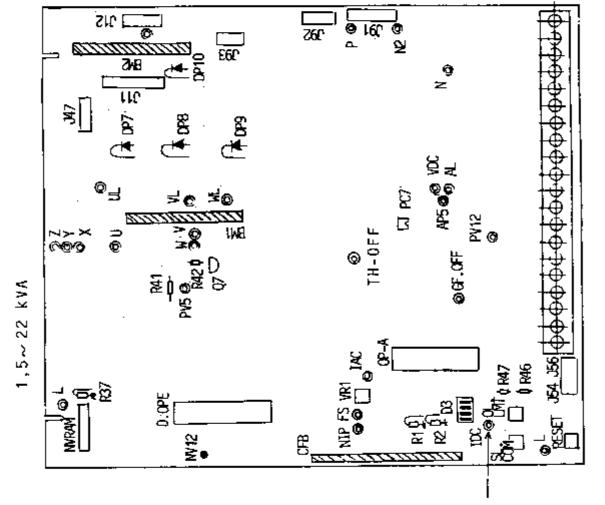

- \*1) Power source of base circuit for 22kVA or less is positive voltage. Power source of base circuit for 33kVA or more is both positive and negative voltage.
  - and negative voltage. \*2) L:PCB for control B:PCB for base drive

 $\mathbb{U}$ 

 $\boldsymbol{b}$ Check Address(Location) See Use and level pin page ~22kVA 33~75kVA 100kVA~ U PWM signal from control board 2D 3E(L) 1J(L)٧ 3D 3E(L)  $U_{+} - L$  ,  $X(U_{-}) - L$ 1J(L) W 2E(L) 2E(L) 3D 1J(L) V + - L, Y(V -) - LХ 1J(L) 1D W+ - L , Z(W-) - L ¥ 10 3E(L) 1J(L) Ζ 2E(L) 1D 1J(L) -5¥ V/F converter output signal FS 6A 4A (L) 6A(L) FS --- L  $V_{0-L} = 10V (Dip. switch 10V)$ 5V (Dip. switch 5V) IDI~L<sup>= 20mA</sup> U In case of the above FS-L : approx.390kHz TAC Motor current detecting signal 7B 24 5C(L) 7B(L) IAC-L ÍDC DC-current signal 9A 7E(L) 9A(L) IDC --L ŇIP Motor speed detecting signal 6A 5E(L) 3E(L) It is used for automatic restart NIP-L 个 **O** When it is shorted with (),electric thermal and over load limiter function would be stopped TH.OFF 6C(L) 6C 4E(L)

Ù

 $\boldsymbol{\psi}$ 




U

Ŵ

Ŀ

U



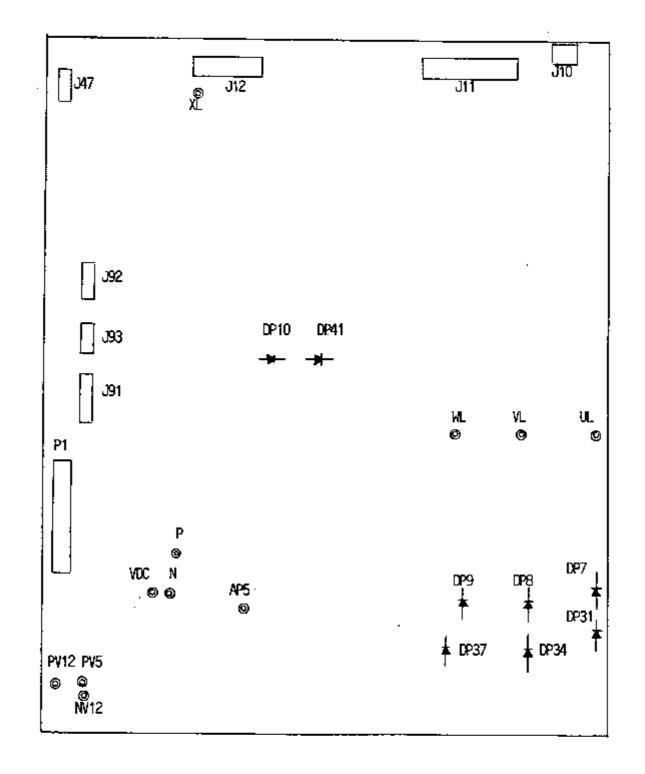
PARTS LAYOUT OF CONTROL BOARD

CHECK PIN
CHECK LAND

8~~22KAV ONFA

q

U


U

U

U

 $33 \sim 75 k VA$ 

.



## PARTS LAYOUT OF BASE DRIVE BOARD

#### **4 TROUBLE SHOOTING**

U

 $\mathbb{U}$ 

U

Ψ

**4-1 TROUBLE SHOOTING AND MESSAGE CONTENTS** 

The inverter will operate as shown in Table 10 below if abnormal. Locate the cause and take corrective measures promptly before restarting operation.

| Т | a | b | 1 | e |
|---|---|---|---|---|
|   |   |   |   |   |

Fault Message and Diagnosis

|                        | Symp                            | ptom of               | <b>malfunction</b>                                           |                            |                                                             |     |                                                                                        |                                                                    |
|------------------------|---------------------------------|-----------------------|--------------------------------------------------------------|----------------------------|-------------------------------------------------------------|-----|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Circuit breaker<br>MCB | Electronignetic<br>contactor Mg | Thermal cuimy<br>ther | Display on<br>digital<br>operation<br>panel<br>(figures<br>) | Fault alara<br>Fault state | Cause for fault<br>(Message contents)                       | Rei | Check points                                                                           | Suggested camedy                                                   |
|                        |                                 |                       | Over.V                                                       | 0                          | DC smoothing circuit<br>- Overvaltage                       | •   | Check for sudden<br>deceleration.                                                      | Increase the decale-                                               |
|                        |                                 |                       |                                                              |                            | •                                                           |     | Check that the motor<br>is not rotated from<br>the load side.                          | The motor remost be<br>applied to continuous<br>regenerative load. |
|                        |                                 |                       | OC.Accel                                                     | •                          | Overcurrent during<br>Bothr acceleration<br>(overcurrent at |     | Chuck for suiden sceeluration.                                                         | Increase the acceleration time.                                    |
|                        |                                 |                       |                                                              |                            | (overcarrent gr<br>acceleration)                            |     | Chuck for output<br>shortclrcuit or<br>ground fault.                                   | Check for the output<br>ling (motor) and moto<br>shortcircuit.     |
|                        | 1                               |                       |                                                              |                            |                                                             |     | Check that torque<br>boost is not too high.                                            | Reduce the torque boost.                                           |
|                        |                                 |                       |                                                              |                            |                                                             |     | Check that the motor<br>is not locked.<br>Check that jogging<br>frequency is too high. | Check the mator of<br>load.<br>Reduce the jogging<br>frequency.    |
|                        |                                 |                       | OC.Decel                                                     | 0                          | Overcurrent during<br>motor deceleration<br>(Overcurrent at | *   | Chuck for suddem<br>duceleration.                                                      | Increment the deceleration time.                                   |
|                        |                                 |                       |                                                              |                            | deceleration)                                               | _   | Check for output<br>shortcircuit or<br>ground fault.                                   | Check the output line<br>motor shortcircuited.                     |
| İ                      |                                 | -                     | QC.Drive                                                     | •                          | Overcorrent during<br>constant operation<br>of motor        |     | Check for sudden<br>chauge in load.                                                    | Eliminate sudden<br>changes is load.                               |
|                        |                                 |                       |                                                              |                            | (Overcurrent during operation)                              |     | Chack for output<br>shortcircuit and<br>ground fault.                                  | Check the output line<br>motor abortcircuit.                       |
|                        |                                 |                       | Over.L                                                       | 0                          | Inverter overload<br>(Overloaded<br>operation)              | *   | Chack that the load<br>is not too beavy.                                               | Reduce the load<br>factor.                                         |
|                        | ĺ                               |                       |                                                              |                            |                                                             |     | Chack then the<br>electronic thermal<br>level is correct<br>(ndt changed).             | Adjust to a proper<br>level.                                       |

11

17

|                       |                                                  | n of | <b>Milfunction</b>                                     |                      |                                                  | -       |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                 |
|-----------------------|--------------------------------------------------|------|--------------------------------------------------------|----------------------|--------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Clrudt Breeker<br>Hek | Electronegueric<br>currector Mg<br>Thereat ralav | THKY | Display on<br>digital<br>operation<br>panel<br>('ERROR | Fault alara<br>Felay | Cause for fault<br>(Message contents)            | i letal | Check points                                                                                                                      | Suggested remedy                                                                      |
| i                     |                                                  |      | OH Fin                                                 | 0                    | Temperature signifi-<br>cancly increasing        | ۸       | Check that the cooling fan is rotating.                                                                                           | Replace the cooling<br>fan-                                                           |
|                       |                                                  |      |                                                        |                      | (Fin overhest)                                   |         | Check that the ambient<br>temperature is not coo-<br>high.                                                                        | · · · ·                                                                               |
|                       |                                                  | İ    | OVER C.                                                | o                    | Overcuffent<br>detection Just<br>after power ON  | *       | Check that the<br>detector current<br>circuit is pormal.                                                                          | Check abnormal<br>conditions of current<br>detector and PC board<br>detector circuit. |
|                       |                                                  |      | Under V.                                               | 0                    | Power supply<br>abnormal<br>(Vodervoltage)       | •       | Check that op voltage<br>drops.                                                                                                   | Review the power<br>supply Aystem,                                                    |
|                       |                                                  |      |                                                        |                      | (000010010488)                                   |         | Chuck that no poor<br>contact of MCB and Mg<br>is found.                                                                          | Replace MCB and Mg.                                                                   |
|                       |                                                  |      |                                                        |                      |                                                  |         | Check that power has<br>been turned OFF or<br>instantaneous power<br>failure has occurred<br>during jogging.                      | Do not turn power OFF<br>during jogging<br>operation.                                 |
|                       |                                                  |      |                                                        |                      |                                                  |         | Check that 100 mset or<br>less instantaneous<br>power failurs has<br>occurred more than<br>10 times repeatedly<br>for 10 minutes. | Re-chack the power supply system,                                                     |
|                       |                                                  |      | Inst.P-F                                               | •                    | Power supply<br>Abnormal<br>{Instantineous power | A       | Check that no voltage drop is found.                                                                                              | Review the power supply system.                                                       |
|                       |                                                  |      |                                                        |                      | failure)                                         |         | Check that no poor<br>contact of MCB and Mg<br>is found.                                                                          | Replace MC8 and Mg.                                                                   |
|                       |                                                  |      | NG FRS                                                 | a                    | Free-run stop<br>Command stoormal                | >       | Check that the opera-<br>tion command is given<br>during motor free-run,<br>and that no FRS is<br>entered.                        | Do not enter operatio<br>command, FRS during<br>free run.                             |
|                       |                                                  |      |                                                        |                      |                                                  |         | With Free-run Stop<br>applied, underwoltage<br>or instantaneous<br>power feilure has<br>occurred.                                 | Re-effect operation<br>after reset.                                                   |
|                       |                                                  |      |                                                        |                      |                                                  |         | With Free-cun Stop<br>appliad, power has<br>been cut off.                                                                         | le-staft operation<br>after reset.<br>With Fran-run Stop                              |
|                       |                                                  |      |                                                        |                      |                                                  |         | With Pres-run Stop<br>Applied, power has<br>been turned ON or<br>reset operation has<br>been performed.                           | applied, do not turn<br>power CFF.                                                    |

U

U

U

 $\cup$ 

|                        |                                                  | of maifunction                                                     | •       |                                                                   |         |                                                                                                                                                                             |                                                                                                                 |
|------------------------|--------------------------------------------------|--------------------------------------------------------------------|---------|-------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Clevint breaker<br>MCH | Electromognetic<br>Contactor Ng<br>Thermal rulay | ;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | . 22    | Gause for (auto<br>(Message contents)                             | Kesel - | Check points                                                                                                                                                                | Suggested rangdy                                                                                                |
| :                      |                                                  | CPU                                                                | 0       | (CPV error)                                                       | Í •     | Check that no large<br>noise gource is found<br>nearby.                                                                                                                     | Keep the noise source<br>away from the unit.                                                                    |
|                        |                                                  | <u> </u>                                                           |         |                                                                   |         | Inverter abnormal                                                                                                                                                           | Repair                                                                                                          |
|                        |                                                  | DE 0 <b>T</b>                                                      | د  <br> | (DC braking setting<br>time over.)                                | *       | Check that the DC<br>braking external<br>command input time<br>does not exceed the<br>time preset by F-22<br>T-DCB.                                                         | Re-set the T-DC8 tim<br>or adjust DC braking<br>external command inputime<br>time to less than<br>T-DCB.        |
|                        |                                                  | NG - JOG                                                           | 0       | (The jogging mode<br>15 used inadvertent<br>19)                   |         | Check that power has<br>been turned ON with<br>the jogging mode ON,<br>commercial power<br>supply voltage has<br>been awitched or reser<br>operation has been<br>performed. | With the jogging mode<br>ON, do not turn<br>power ON, switch<br>commercial power<br>supply valtage or<br>resat. |
| a :                    |                                                  | -                                                                  | -       | · · ·                                                             | 3       | Power supply side<br>shortcitcuit and<br>ground fault.                                                                                                                      | Repair the short-<br>circlif and ground<br>fault.                                                               |
| i                      | i                                                |                                                                    |         |                                                                   |         | insufficient HCB<br>capacity                                                                                                                                                | Encrease MCB<br>capacity.                                                                                       |
|                        | <br> <br>                                        | -                                                                  | ;<br>[  |                                                                   | !       | Inverter module or<br>converter module<br>damaged.                                                                                                                          | Repair                                                                                                          |
|                        | ٩                                                | -                                                                  | -       | Power failure                                                     | •       | Check for the power failure.                                                                                                                                                | Review the power supply system,                                                                                 |
|                        |                                                  |                                                                    |         |                                                                   |         | Check that no poor<br>contact of MCB and Mg<br>is found.                                                                                                                    | Replace MCB and Mg.                                                                                             |
| ļ                      | a                                                | -                                                                  | -       | -                                                                 | c       | Overload                                                                                                                                                                    | Reduce the load factor.                                                                                         |
|                        |                                                  |                                                                    |         |                                                                   |         | Thermal relay preset<br>value faulty                                                                                                                                        | Set the preset value<br>to a proper one.                                                                        |
|                        |                                                  | NG . DB                                                            | a       | OB terminal was<br>used iosdvertently.                            | *       | With DB ON, power has<br>been turned ON or<br>reast operation has<br>been performed.                                                                                        | With DB ON, do not<br>turn power ON or<br>reset.                                                                |
|                        |                                                  | UV WAIT                                                            | -       | Supply voltage<br>Jonarnai<br>(Codervoltage)                      | -       | When restart function<br>was selected, supply<br>voltage dropped to<br>100V or less.                                                                                        | Review the power<br>supply system.                                                                              |
|                        |                                                  | OV. SRD                                                            | â       | BRH cerminal is<br>nor connected<br>with 1 cerminal.              | ^       | Check BRH-L shart- {<br>circuited.                                                                                                                                          | Connect 3RK with<br>L.                                                                                          |
|                        |                                                  | #0 OV.SEC                                                          | •       | Overvoitage of<br>Ioput, voitage<br>not during dr-<br>celeration, | ^       | Check input voltage<br>dossn't enceed teted<br>voltage +103,                                                                                                                | Check the power<br>supply system.                                                                               |

.

\*) 1# 220V:283VAC 3# 380V:565VAC

U

U

 $\mathbb{P}$ 

U

.

|                        | Symptom of malfunction |                       |                                                       |                      |                                       |       |                                                            |                   |
|------------------------|------------------------|-----------------------|-------------------------------------------------------|----------------------|---------------------------------------|-------|------------------------------------------------------------|-------------------|
| Circuit breaker<br>MCB | 1100                   | Thermal selay<br>Tan' | Display an<br>digital<br>opeation<br>penei<br>(?ERBOR | Fault alara<br>relay | Cause for fault<br>(Message contents) | Reset | Çheçk points                                               | Suggested refiedy |
|                        |                        |                       | BOD<br>Numeral                                        |                      | HYRAM Fellure                         | -     | Check that no operation<br>is performed after power<br>on. | See page 21,22    |

.

O: shows the equipment which seems to operate in general.

-

 $\bigcirc$ 

U

 $\mathbb{C}$ 

when trouble happens.

U

U

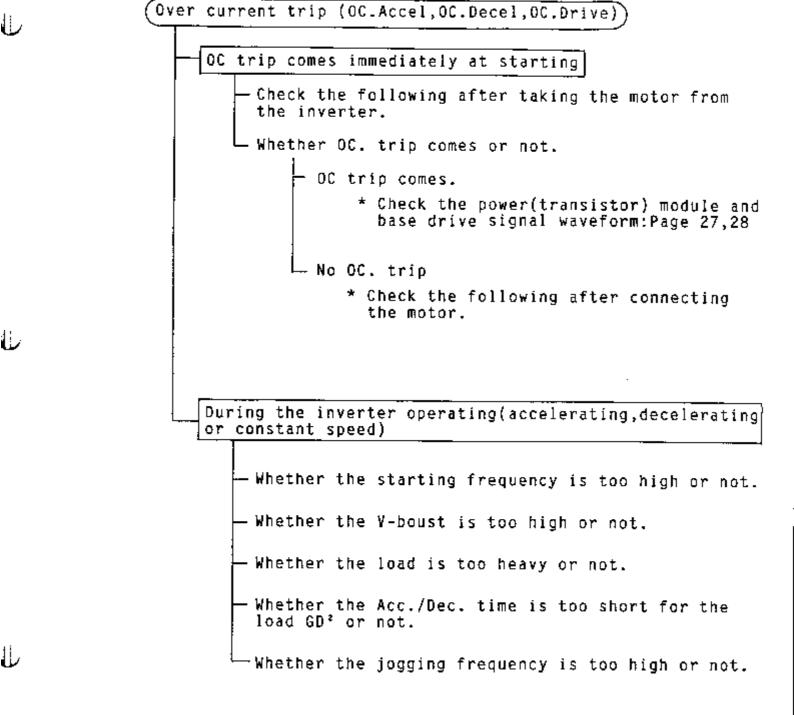
U

U

No motor rotates Check the wiring between inverter and motor. Chevk the input voltage whether it is rated voltage or not. Check the wiring between (ERS) and (L) on the circuit board \*They should be shorted (FRS) normally close Check the wiring between (RS) and (L) on the circuit board \*They should be open. -{RS}<u>-</u> - -(L} Check the operation mode in the monitor mode whether it is set according to application system. F-SET-M: OPE-key/Terminal F/R-SW : OPE-key/Terminal Check the referenc (freq.setting) signal Wh<u>en\_F\_SET</u>-M "OPE-key" is selected,check the FS[ || || || |Hz in the monitor mode. When F-SET-M "Terminal" is selected, check the voltage or current signal on the terminal of printed board. V<sub>0-1</sub> :0∼10VDC or 0 5VDC I<sub>OI-1</sub>:4~20mA Check whether setting frequency is less than minimum frequency. \*Set the frequency more than minimum frequency. Check whether LCD indication is in "Monitor" mode. \*Select "Monitor" mode. In the function mode, the inverter cannot start. Check whether STOP key of Dig.Ope is pushed when F/R-SW in "Monitor" mode is selected with "terminal". \*Once,run command(FW/RV) must be turned off,and then turned on again from the terminal. Check the output voltage of U-V,V-W and W-V whether they are balanced or not. Check whether setting frequency of "SPEED1"~"SPEED3" is proper value when you use multi stage speed terminal(CF1,CF2). \* "SPEED1~3" must be set or multi stage speed command (CF1,CF2) must be removed. FW ON OFF OFF ON RY OFF OFF ON ON -Check whether  $\begin{bmatrix} FWD\\ RUN \end{bmatrix}$  key and  $\begin{bmatrix} REV\\ RUN \end{bmatrix}$  key of D-OPE are pushed together in "Ope-key" mode. -Check whether forward operation command and reverse operation command are input together in "Terminal" mode. \* Only one signal should be input.

No motor accelerates U Check the referenc (freq.setting) signal Wh<u>en F-SET-M</u> "OPE-key" is selected, check the FS Hz in the monitor mode. When F-SET-M "Terminal" is selected, check the voltage or current signal on the terminal of printed board.  $V_{O-L}$  :0~10VDC or 0 5VDC I<sub>01-1</sub>:4~20mA Check the F-05(frequency upper limiter). preset value of "F-END" in the function Check whether the mode is more than maximum frequency. Check wherther the wiring between (JG) and (L) on the circuit board is open. [JG)— · — (U)Check the load whether it is too heavy or not. \*Reduce the load or adjust the overload limit level by "OL.LMT" (VR) clockwise. 100% 50% --150% OL.LMT Check whether setting frequency of "SPEED1"~"SPEED3" is proper value when you use multi stage speed terminal(CF1,CF2). \* "SPEED1~3" must be set or multi stage speed command

(CF1,CF2) must be removed.


U

U

U

10

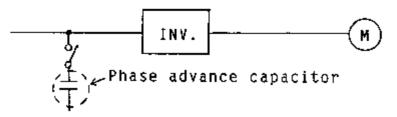
\_\_\_\_



 $\mathbb{P}$ 

Over voltage trip

U


U

U

U

 Check the deceleration time whether it is too short for the GD<sup>2</sup> of load or not.
 \* Prolong the deceleration time.
 \* Use the regenerative braking unit.

Check the power source network line whether there are phase advance capacitors on it and they are turned on/off during inverter operation or not.



\* Change the wiring system with the phase advance capacitor.

۰,

\* Put the braking unit in order to suppress the over voltage.

37

U Instantaneous power failure trip Check whether power source is turned on again before LCD display is turned off. \* Power source should be turned on again after LCD display is turned off. Т -Power 0N 0N LCD /////ON// OFF T : 10 220V more than 4.0 sec. 3Ø 380V more than 2.0 sec. Check the magnetic contactor on the inverter primary side whether it has chattering or not. U Did the power failure occur? \* If the automatic restart function after instantaneous power failure is allowed for the application system, use the automatic restart function in the function mode F-28. 00000101 F-28 switch 00: Not available restart 10: Available restart Under voltage trip Check the power source voltage whether they are less than protection level or not. 10 220V 1.5~3.5kVA : 150~160 VAC 30 380V 2.5~75kVA : 280~320 VAC U 38 380V 100~180kVA : 323 VAC Check the transient voltage drop by rush current into the smoothing condenser or starting current of the motor. \* Increase the power source capacity. \* Use the restart function on the F-28 F-28 switch 00000101 00: Not available restart 10: Available restart Check the magnetic contactor whether it has chattering or not.

Ŀ

## (Overheat trip)

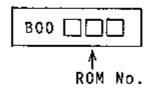
- Whether cooling fan in the inverter is rotating or not.
- Whether air inlet and exhaust ports on the panel box is blocked or not.
- Whether the cooling air path is blocked or not.
- Whether the temperature in the panel box is less than specified value or not. \* If it is too high,improve the cooling. :See page 59~62,selection of ventilation

(Overload trip)

L

- Check the electronic thermal level in the function made F-23 whether it is proper for the load condition or not.
- Check the overload limiter level whether it is proper for the load condition or not.
   \* This level can change with "OL.LMT".

Ŀ


Ŀ

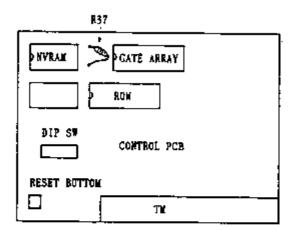
U

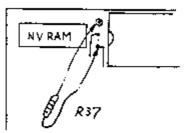
U

#### <u>4-3 NVRAM (Non Volatile EEPROM)</u> failure

When the following phenomenon has been appeared, replace the NVRAM. LCD indication on the digital panel is:




U


U

U

U

And no operation is performed after power on. No operation is performed even forced reset or even when the initial setting is performed.





Solder a resistor R37(10 k $\Omega$  1/3W) if it is not mounted on the PCB. After replacing the NVRAM, return the setting data to the initial (factory) setting according to "How to return the setting to the initial setting". After that, re-program the data according to customer's setting.

Note: When no data is stored in memory after various operations are performed although the data is set and the  $\boxed{STR}$  is depressed, it should be noted that this abnormality is due to the following reason.

Reason ...... Set the data and press the STR, then press the Forced Reset (or short-circuit RS-L terminals) and cut off the power supply.

Countermeasures ... Set the data and press the STR to store it in memory, then turn power OFF once, and store the data in an element to save it even after power OFF.

21

## 4-4 HOW TO RETURN THE SETTING TO THE INITIAL SETTING

\_ \_ \_

When retuning the setting to the initial setting for some reason, flolow the steps below.

① Turn power on. ② Set the right side of DIP SW on PCB to "ON".

U

U

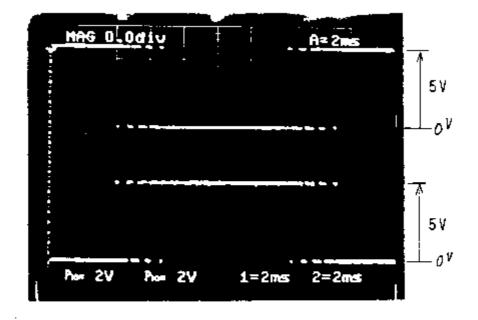
Ŀ

U

|       | Turn this ON.<br>ON<br>OFF                                       |
|-------|------------------------------------------------------------------|
| 3     | With the MON FUN STR keys on the digital operation panel         |
|       | pressed at the same time, turn the forced reset button OX.       |
| ۹     | After resetting , release these 3 keys pressed in 1 or 2 sec.    |
|       | At this time, BOOERE (ROM NO.) is displayed and operation steps. |
|       | If FM 000.0Hz is displayed, it means that these 3 keys has       |
|       | been released too early. Repeat steps ② - ④ above again,         |
| NOTE: | But XVRAM failure makes BOODER remain displayed even for the     |
|       | above steps.                                                     |
|       | Good NVRAM : Displays FM 000.0Hz by forced reset                 |
|       | Failed NVRAM : Displays still $BOO(Biff)$ by forced reset        |

- Turn power OFF or turn the forced reset buttom or switch ON.
- Turn DIP SW OFF.
- ⑦ Turn power ON again, and check that the data corresponds to the standard perset value(factory setting).

#### 5 mearsurment


## U

## 5-1 PWM OUTPUT SIGNAL WAVEFORM FROM THE CONTROL BOARD

~ ~

- The PWM control signal can be checked with the check pins,U~Z, on the control board.
- Check pins and waveform

|   | Pin         |   | Phase |
|---|-------------|---|-------|
| U | <b>`</b>    | L | υ÷    |
| ٧ | <           | L | ¥+    |
| W | <u>&lt;</u> | L | ₩+    |
| X |             | L | - U   |
| Y |             | L | V -   |
| Z | -           | L | ₩-    |



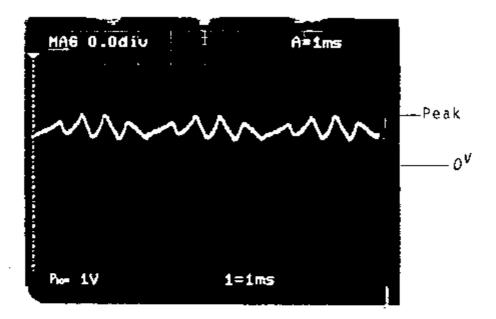
U

U

U

The pulse number would be changed according to output frequency.
 When the PWM signal is not proper, the control board should be changed.

- 5-2 MOTOR CURRENT SIGNAL
- The motor current signal which is rectified can be checked with check pins on the control board.


- /

- This signal is used for 0.C,0.L and stall prevention detection.
- The signal level is: Rated current of the inverter / 2y DC

Ł

Checkpin and waveform

I<sub>AC</sub> <----



Trip level

| kVA        | OC.Accel. | OC.Decel. | OC.Drive | Motor cirrent |
|------------|-----------|-----------|----------|---------------|
| 1.5~3.5SF3 | 4.4 V     | 4.4 V     | 4.4 V    | 220%          |
| 2.5~5.5HF3 | 3.887     | 3.88V     | 3.88¥    | 180%          |
| 8~180HF3   | 3.6 V     | 3.6 V     | 3.6 V    | 180%          |

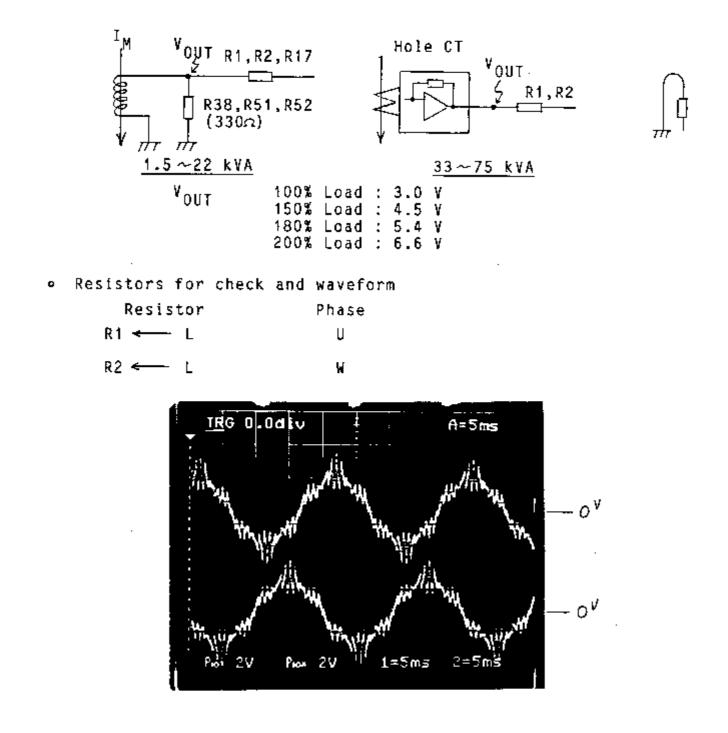
\* THe trip level is the peak value of this signal.

U

U

U

U


- The motor current waveform can be checked with resistors on the control board. The signals come from AC/CT of the output.
- AC/CT output

Ŀ

U

U

U

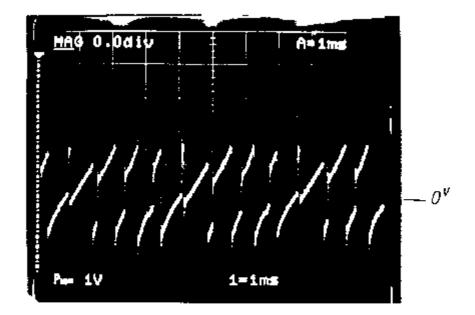


\* The waveform would be changed according to output frequency.

Ζ5

5-4 DC-CURRENT SIGNAL

- The DC-current of the intermidiate circuit can be checked with the checkpin on the control board or base drive board.
- The signal is used for 0.C trip.
- Checkpin and waveform


Ŀ

U

U

Ŀ

N2 – N (on the control board) : 1.5 $\sim$  5.5kVA IDC – L (on the control board) : 8  $\simeq$  75 kVA



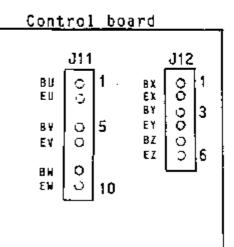
∘Trip level

| Inv.<br>Model | 1.5~3.5SF3 E<br>2.5~5.5HF3 E | 8~33LF3<br>8~40HF3 E<br>100~180HF3 E | 40LF3   | 50~75LF3 | 50 ~ 75HF3 E |
|---------------|------------------------------|--------------------------------------|---------|----------|--------------|
| Trip level    | 1.3V                         | 6.6V                                 | 7.9V    | 7.6V     | 7.17         |
| Checkpin      | N2 — N                       |                                      | IDC — L |          |              |

5-5 Output signal of base drive

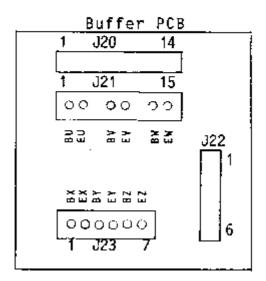
U

Ŀ

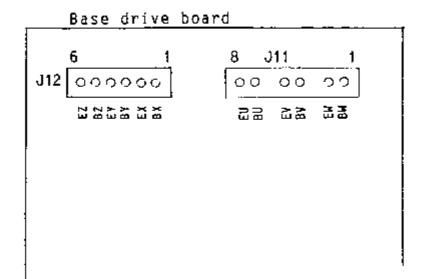

Ŀ

U

## 1 1.5,2.5kVA(SF3)


## <u>2 3.5kVA(SF3),2.5~8kVA(HF3)</u>

#### Control board J11 J12 вU Ó 1 0 1 BΧ £υ Q, 0 3 В۲ 0 0 Β¥ 5 0 0 E۷ ВŹ 6 Ε 0 8W εW С. 10




3 11~22 kVA





4 33~75 kVA



U <u>1 1.5,2.5kVA(SF3)</u> BU — Ευ (U+)G) (R) BV — EV (G) (¥+) V) (R) BW — EW (¥) **(₩+)** (BL) (R) 8X — E (U-) (BR) (W) BY — E (V-) (Y) (W) **BZ** — Ε (W-) (O) (W) 2 3.5kVA(SF3),2.5~8kVA(HF3)

b

U

Ŀ

$$\begin{array}{c} \mathsf{BU} - \mathsf{EU} & (\mathsf{U}^{+}) \\ \mathsf{G} & (\mathsf{R}) \\ \mathsf{BV} - \mathsf{EV} & (\mathsf{V}^{+}) \\ (\mathsf{V}) & (\mathsf{R}) \\ \mathsf{BW} - \mathsf{EW} & (\mathsf{W}^{+}) \\ \mathsf{BU} & (\mathsf{R}) \\ \mathsf{BU} & - \mathsf{EV} & (\mathsf{W}^{-}) \\ (\mathsf{BL}) & (\mathsf{R}) \\ \mathsf{BZ} - \mathsf{EZ} & (\mathsf{U}^{-}) \\ (\mathsf{Y}) & (\mathsf{W}) \\ \mathsf{BZ} - \mathsf{EZ} & (\mathsf{W}^{-}) \\ (\mathsf{O}) & (\mathsf{W}) \end{array} \right] \mathsf{J}12$$

80 — EU (U+) (G) (R) ΒΫ — ΈΫ (¥¥) J 21 V) (R) BW — EW (V) (W+) (BL) (R) BX - EX (8-) (BR) (W) J 23 BY - EY (Y - )(W) (Y) BZ — EZ (W-) (0) (W)

BU — EU (U+) (G) (¥+) J11 (V) (R) BW — EW (W+) 0٧ (BL) (R) 8X - EX (U-) (BR) (W) -97 J12 ī BY - EY (V-) Ý (Y) (W) BZ - EZ (W-) No operating Operating (W) (0)

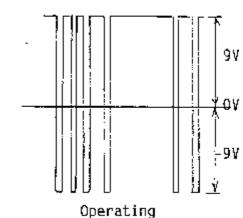
- White

Yellow

W

¥.

-


Wiring color

8٧

Ū

0.81

ᆡ᠋



No operating

Û

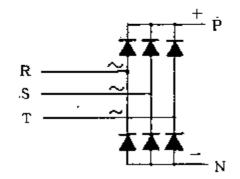
0.81

Operating

311

J12

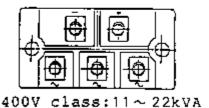
5-6 How to check converter modules


Ŀ

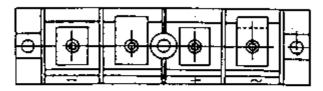
Ŀ

Ŀ

The converter module can be checked to a certain extent at terminals.


<del>~</del> (






200V class:Less than 3.5kVA





400V class:33~100kVA



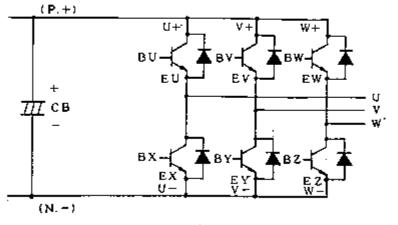
400V class:120~180kVA

Converter module circuit diagram and top views

Turning off power source,make sure that voltage between P and  $^{\rm N}$  is below 15V before operation.

Remove the wirings connected to the converter module and check it alone.

Measure with the tester set to larange.


| Colors of tester terminals<br>BlackRed                                                                                                                     | Resistance value |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      | 50kp or more     |
| $\begin{array}{c c} P(+) & \longrightarrow & R(\sim) \\ \hline P(+) & \longrightarrow & S(\sim) \\ P(+) & \longrightarrow & T(\sim) \end{array}$           | 50ka or more     |
| $\begin{array}{c c} R(\sim) & \longrightarrow & P(+) \\ \hline S(\sim) & \longrightarrow & P(+) \\ \hline T(\sim) & \longrightarrow & P(+) \end{array}$    | 50g or less      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     | 50م or less      |
| $\begin{array}{c c} R(\sim) & \longrightarrow & N(-) \\ \hline S(\sim) & \longrightarrow & N(-) \\ \hline T(\sim) & \longrightarrow & N(-) \\ \end{array}$ | 50kn or more     |

C

~:alternation terminal

If the resistance value is not proper,replace the diode module.
\* Failure symptom : MCB trip (shortcircuit of Power module)

The inverter module can be checked to a certain extent at terminals.



Inverter module circuit diagram

Turning off power source,make sure that voltage between P and N is below 15V before operation. Measure with the tester set to 10 range

Measure with the tester set to  $1 \Omega$  range.

(Easy method to check inverter module without disassembly)

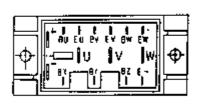
| Color of tester terminals<br>BlackRed        | Resistance value | Check spot |
|----------------------------------------------|------------------|------------|
| P> U                                         |                  | Ŭ+         |
| P → V                                        | 50k A or more    | V+         |
| $P \longrightarrow W$                        | <u> </u>         | W+         |
| N U                                          |                  | U–         |
| <u>N</u>                                     | 50 n or less     | <u>y-</u>  |
| <u>N</u>                                     | 1                | W -        |
| U> P                                         |                  | <u>U+</u>  |
| V P                                          | 50 a or less     | V+         |
| W> P                                         | 1                | W+         |
| <u> </u>                                     |                  | U-         |
| <u>v                                    </u> | 50kn or more     | <u>V</u> - |
| N                                            |                  | W          |

U.

U

U

(Check after disassembly)

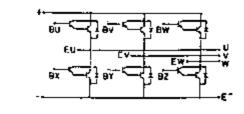

| Color of tester termina<br>BlackRed                                                          | ls<br>Resistance value  | Check spot      |
|----------------------------------------------------------------------------------------------|-------------------------|-----------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                         | 100 or less             | <u> </u>        |
| BW                                                                                           |                         | <u>₩+</u><br>U- |
| BY V                                                                                         | 100 p or less           | <u>V</u> -      |
| $\begin{array}{c c} BZ & \longrightarrow & W \\ \hline U & \longrightarrow & BU \end{array}$ |                         | W<br>U+         |
| $V \rightarrow BV$<br>W $\rightarrow BW$                                                     | 50~200 <i>g</i> or more | V+<br>W+        |
| U BX                                                                                         |                         | Ŭ-              |
| W> BZ                                                                                        | 50~200Ω or more         | <u>V-</u><br>W- |

Ŀ.

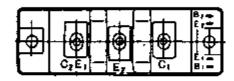
\* Failure symptom : Over current trip causes without connected to a motor.

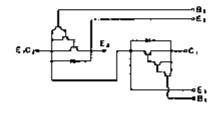
Top views of inverter modules

- r

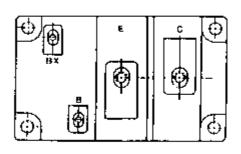



U

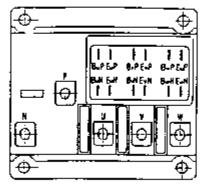

U

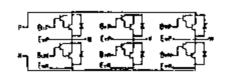

υ

U

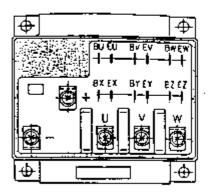


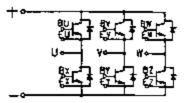

200V class:Less than 2.5kVA



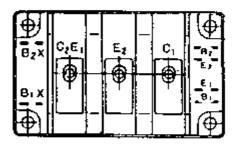



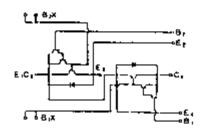

400V class:8~16kVA



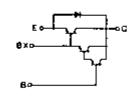


400V class:50~ 180kVA







200V class:3.5kVA






400V class:5.5kVA



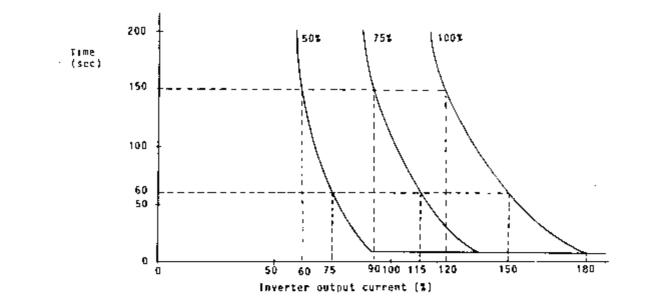


400V class:22~40kVA



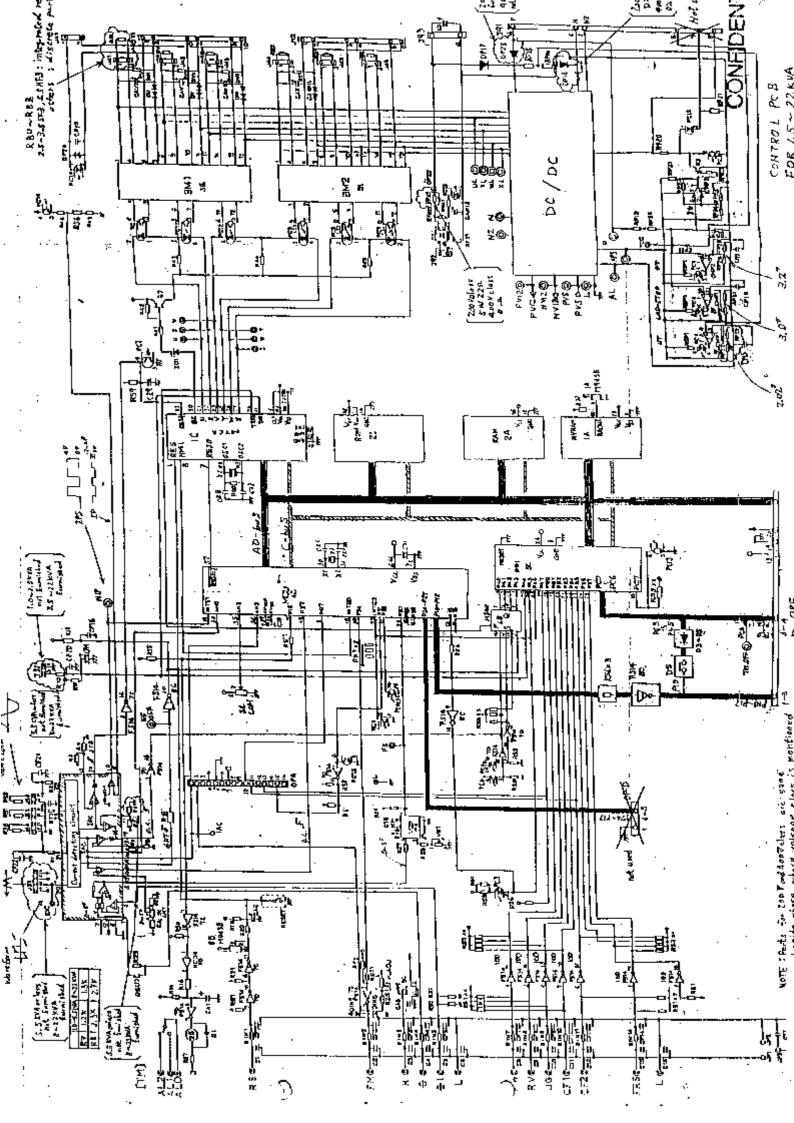
31

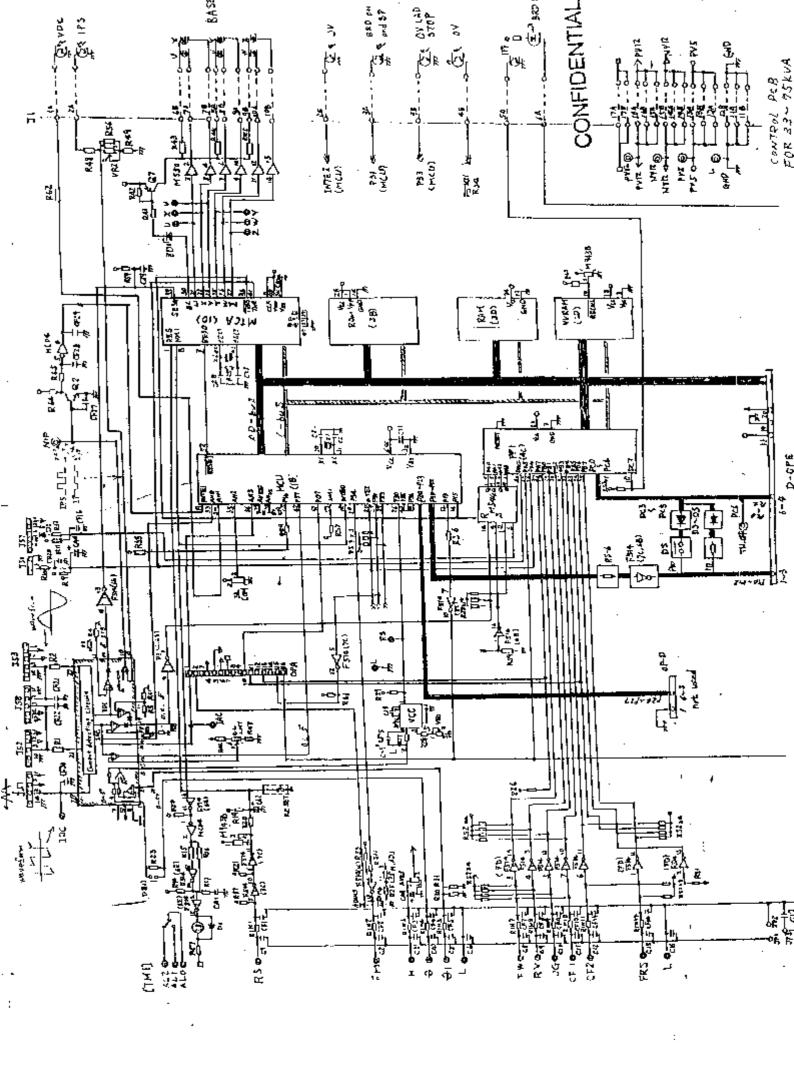
6 Appendix



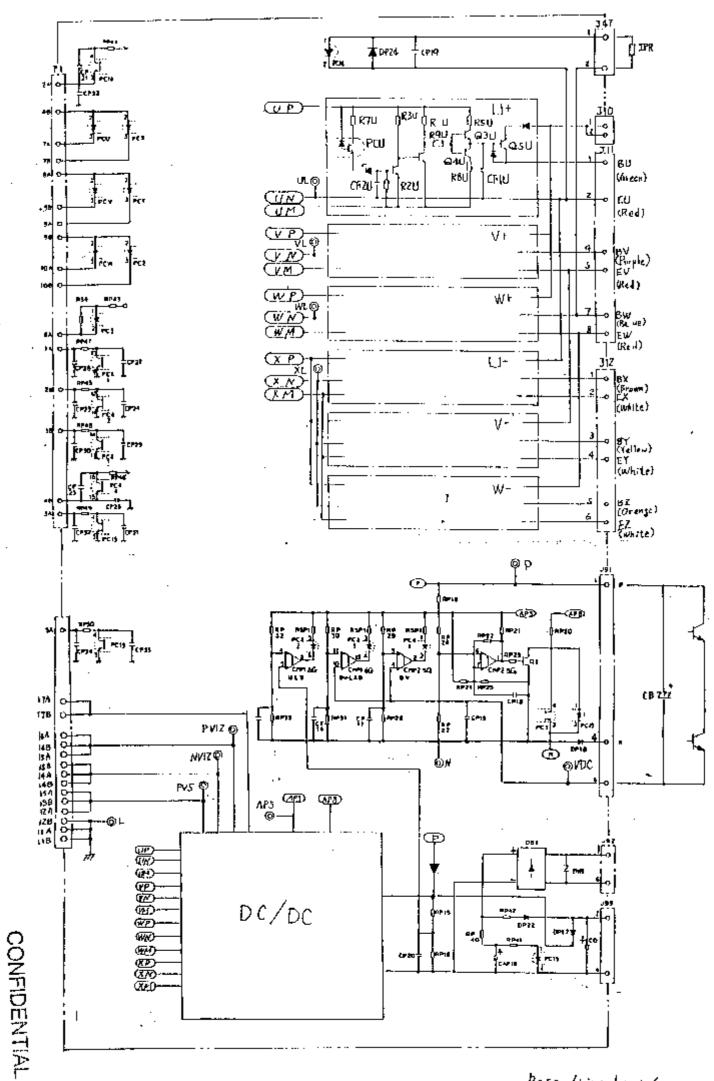

6-1 E-THERM FUNCTION ( F-23 )

U


 $\mathbb{U}$ 

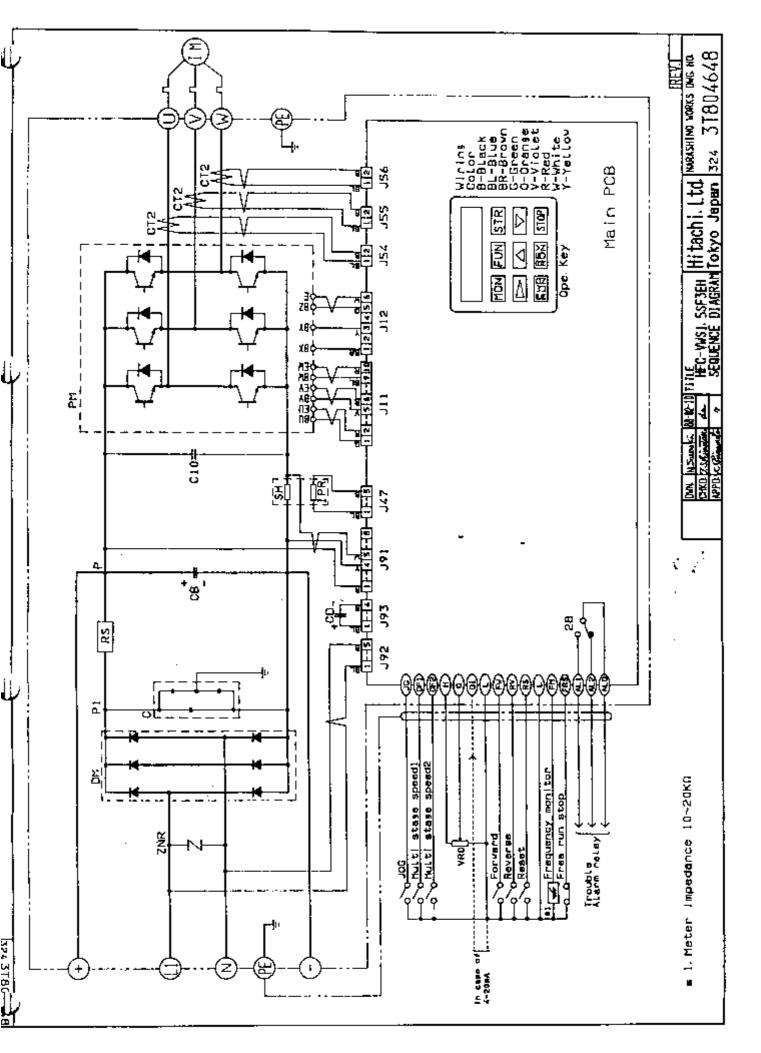

The protection characteristics of the electronic thermal can be changed by OPE-key. The characteristics is approximately as follows:



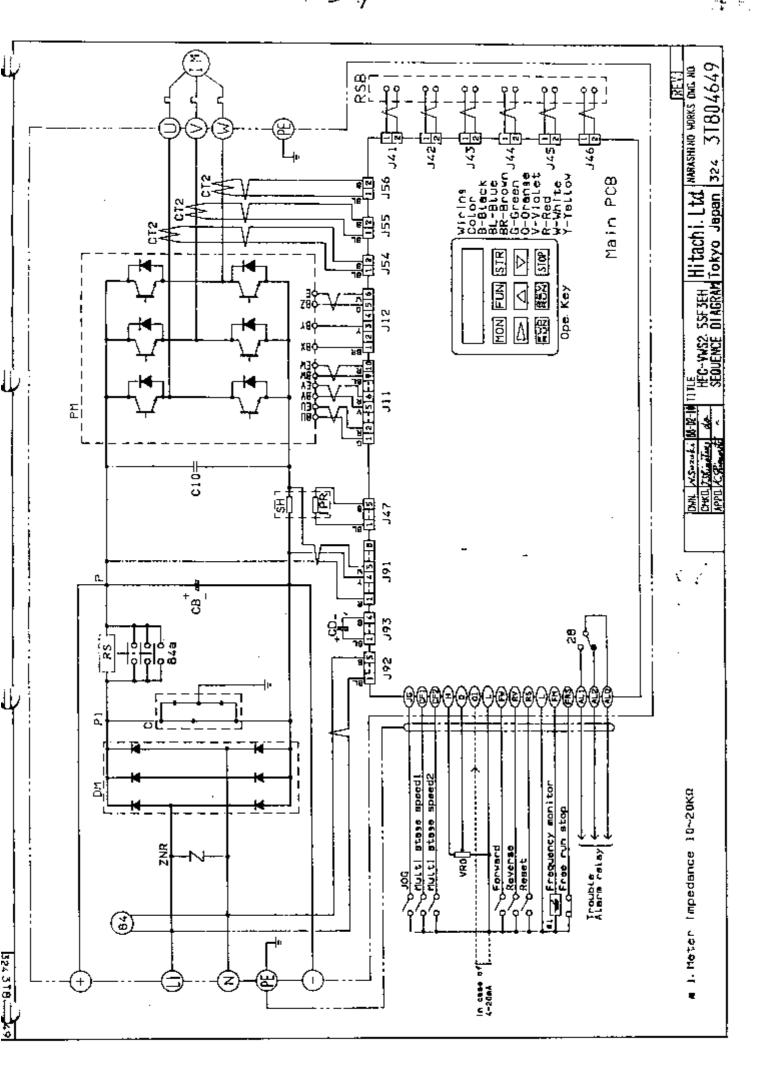

U

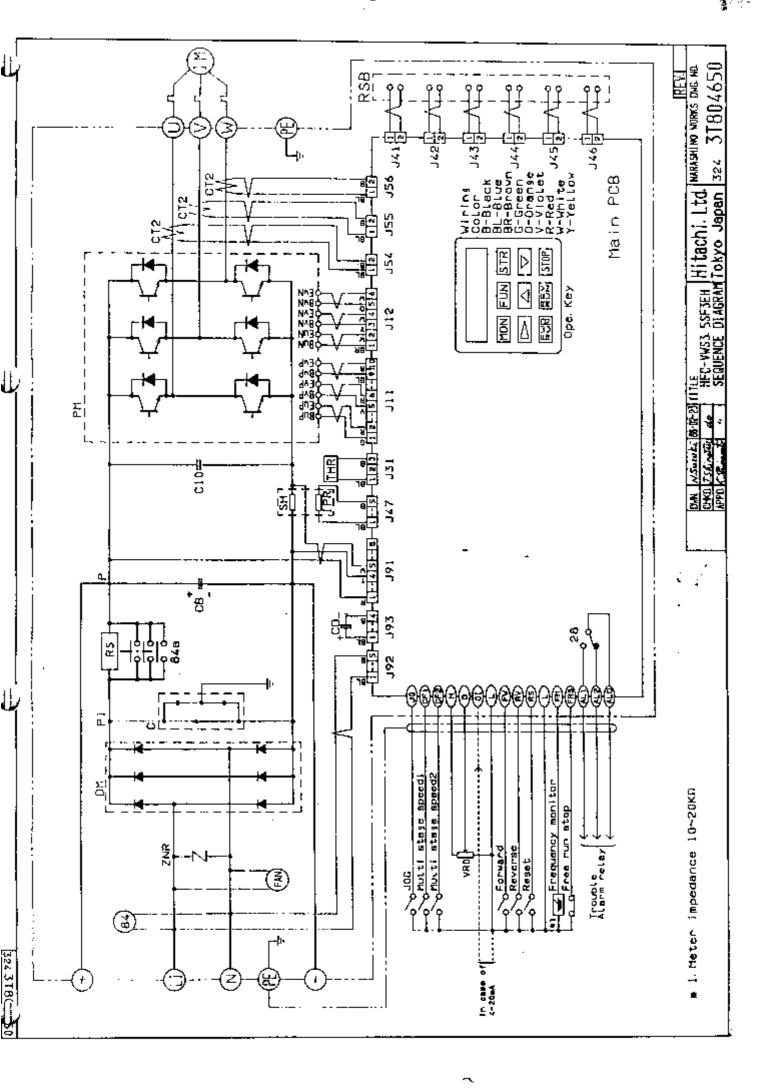
 $\overline{U}$ 

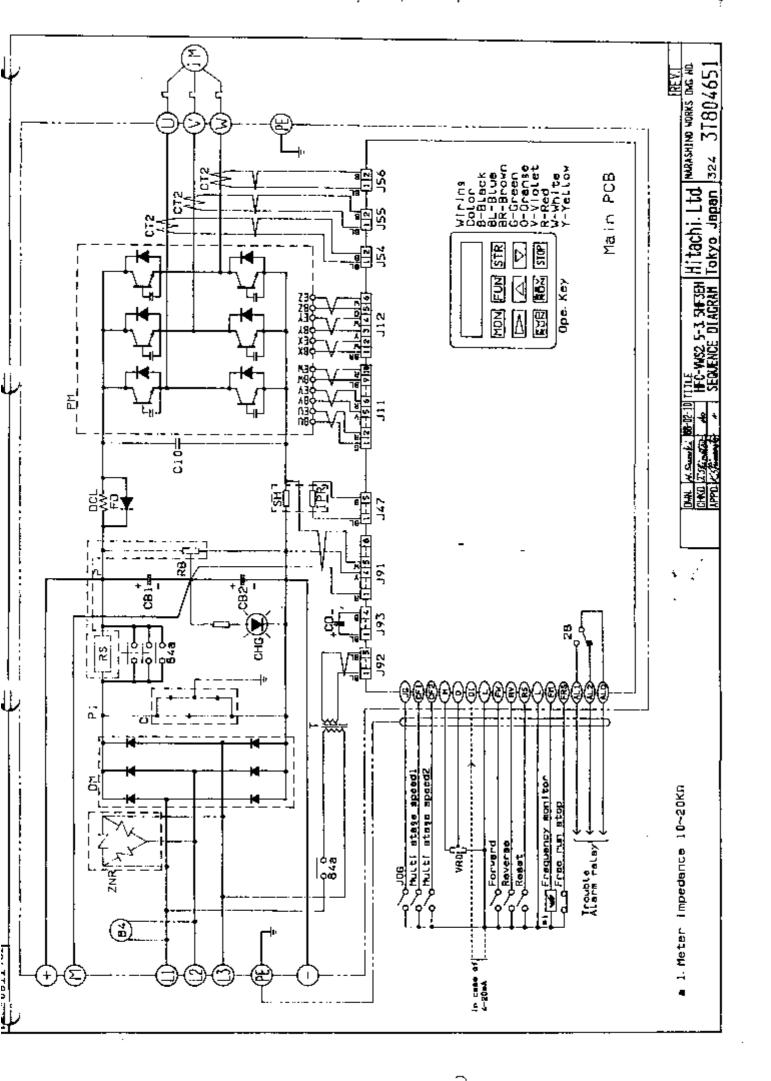




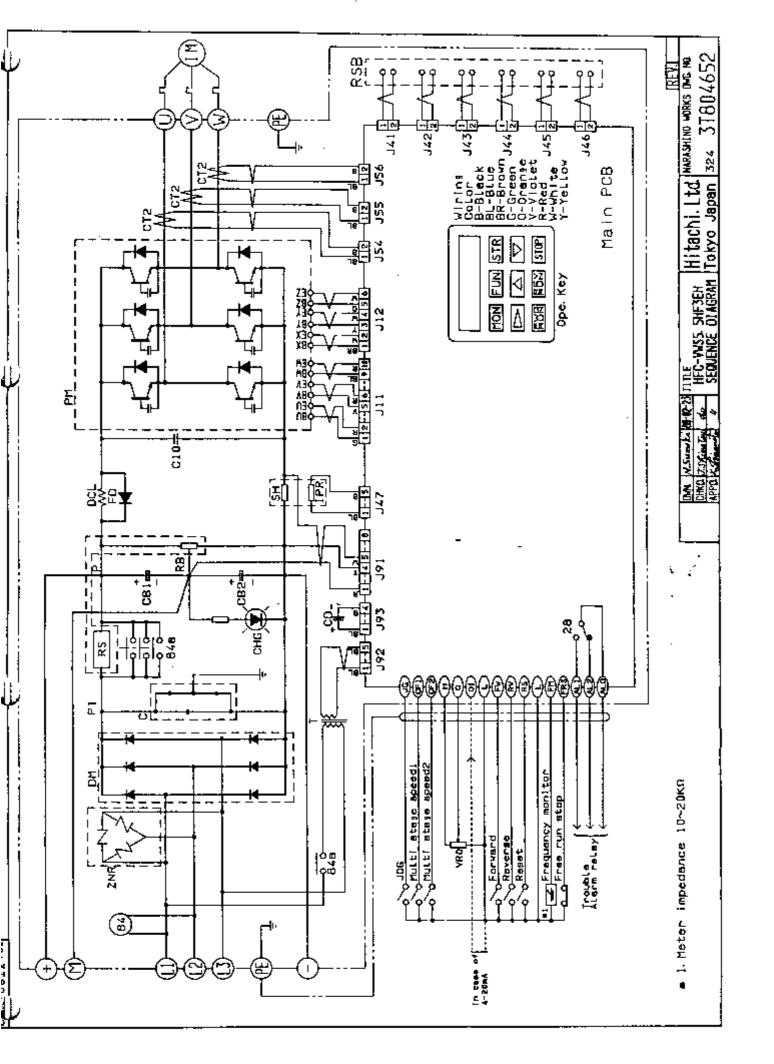

Ĵ



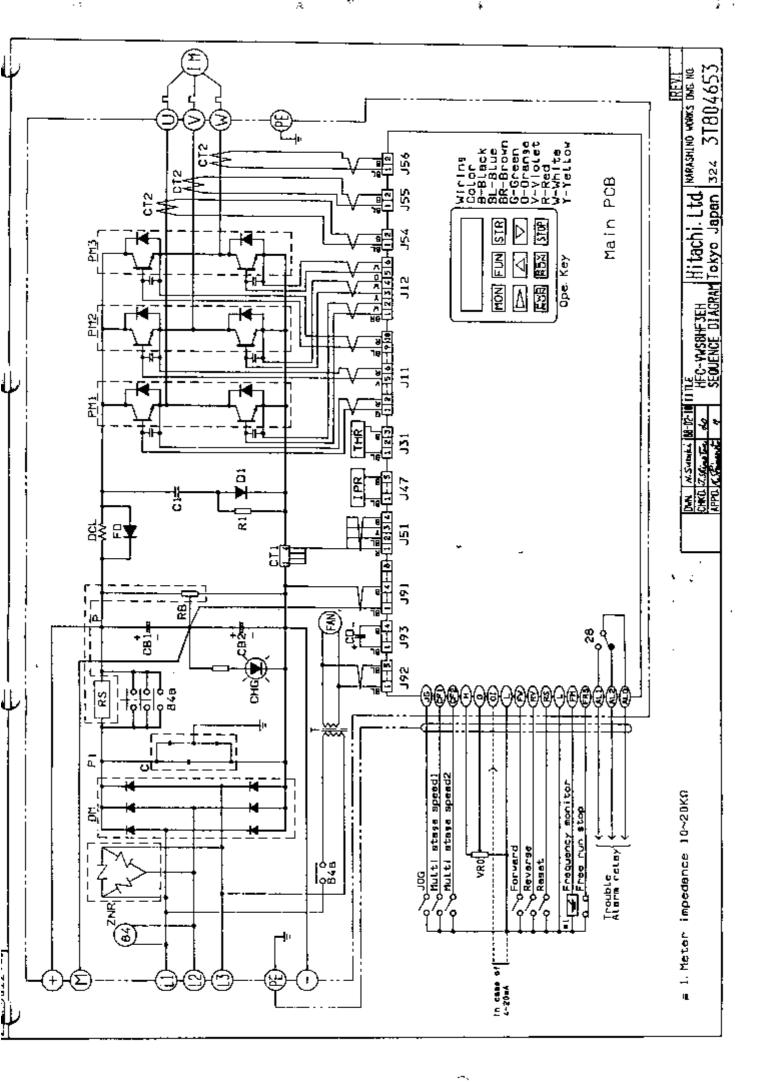


Base drive bourd 33 ~ 75 kvA

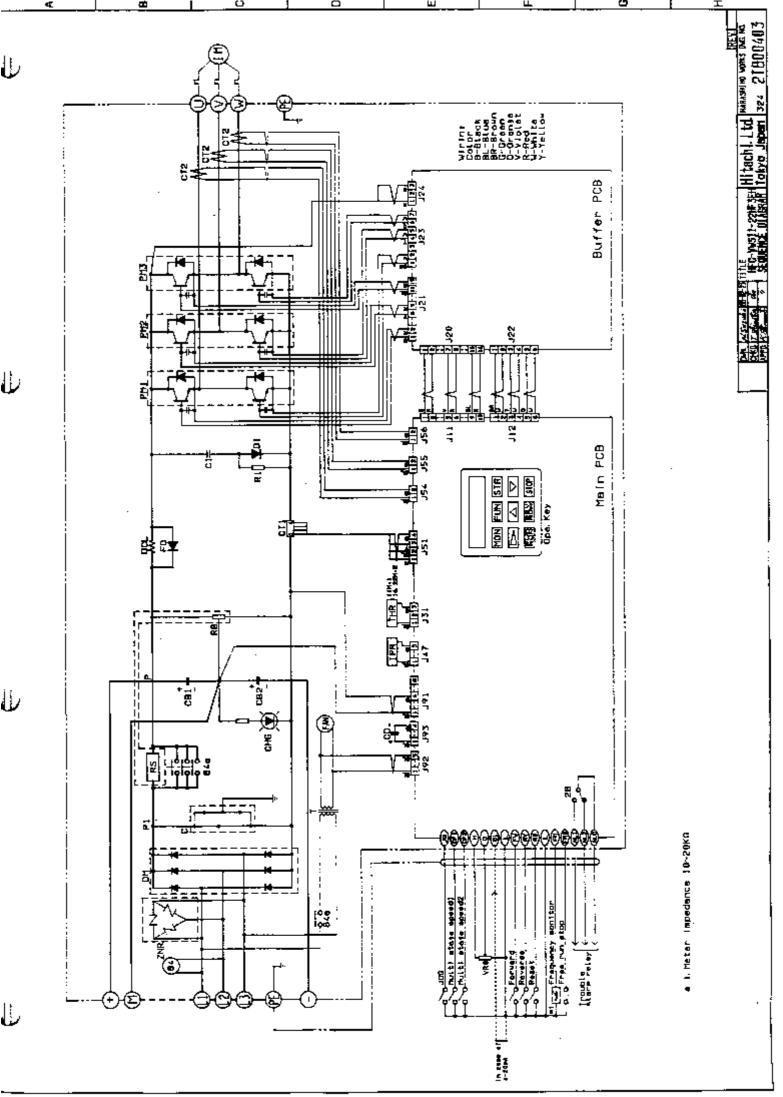


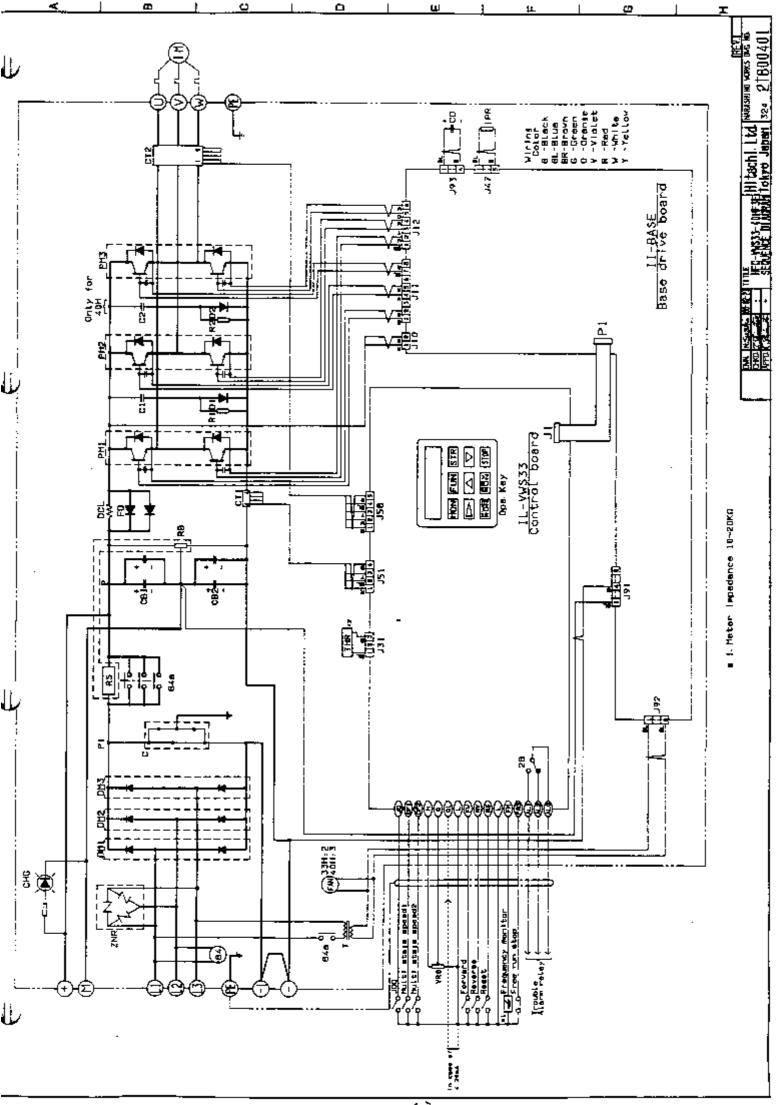


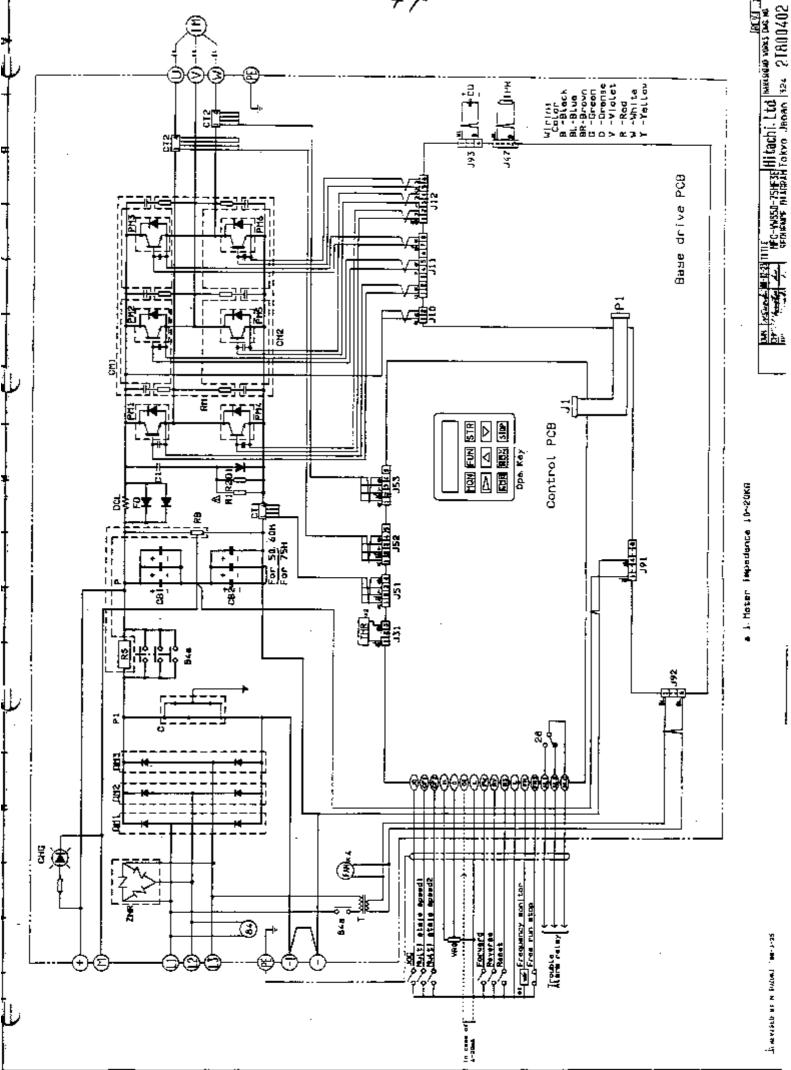


·7





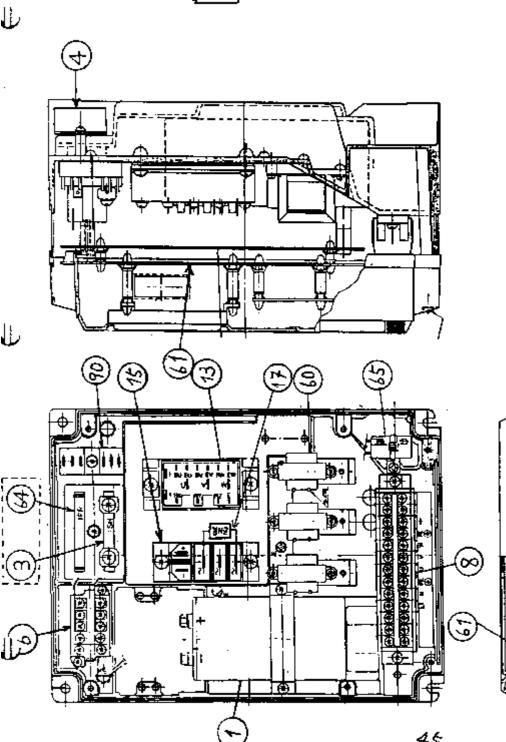

4D










F

t

7

\_\_\_\_\_

| 0 N | MARK  | PARTS NAME              | Q'TY/UN |
|-----|-------|-------------------------|---------|
| -   | CB    | SMOOTHING CONDENSER     | -       |
|     |       | -                       |         |
|     |       |                         |         |
| ÷   | ЯH    | SHUNT RESISTOR          | ¥.      |
| \$  | RŚ    | CURRENT LIMITING RES,   | +       |
| æ   | 84    | MAGNETIC CONTACTOR      | *-      |
| Ð   | Ŧ     | TERMINAL                |         |
|     |       | (H) 3 E 1 2 . 2 . 7 M   |         |
|     |       |                         |         |
| :   |       |                         |         |
| Εt  | μd    | TRANSISTOR MODULE       | -       |
| 15  | MQ    | DIDDE MODULE            | *-      |
|     |       | Ŧ                       |         |
| \$  | ZNR   | SURGE ABSOBBER          | *       |
|     |       |                         |         |
|     |       |                         |         |
|     |       |                         |         |
|     |       |                         | -       |
|     |       |                         |         |
|     |       |                         |         |
|     |       |                         |         |
| +   |       |                         |         |
|     |       |                         |         |
| 60  | ст2   | CURRENT TRANSFORMER     | 2 (3)   |
| 61  | PCė   | PRINTED BUARD (Control) | Ť       |
|     |       |                         |         |
| 64  | 1 P.R | RESISTOR                | 1       |
| 65  | CD    | CONDENSER               | 1       |
| \$  | RS8   | BASE DRIVE RESISTOR     | ۲       |
|     |       | - Only 2.5 SF3E(H)      |         |
|     |       |                         |         |
|     |       |                         |         |
|     |       |                         |         |



HEC-VWS 1.5, 2.5 SF3E (H)

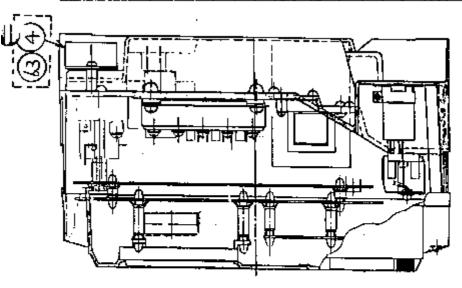
o [

F

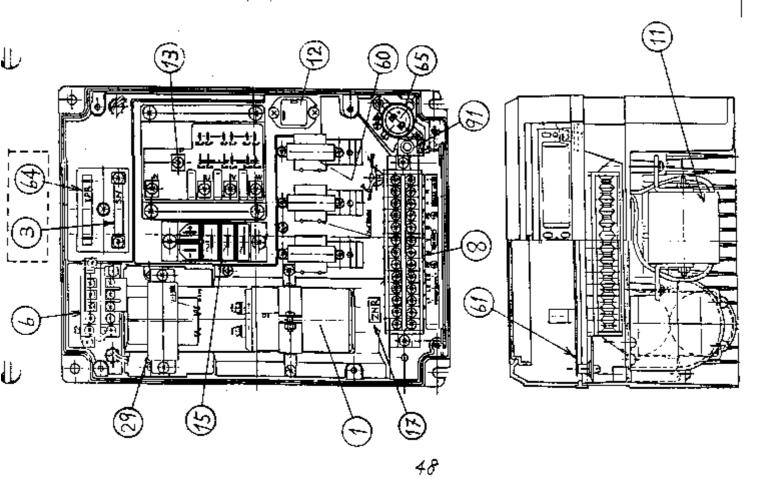

| (1)     (2)     (3)     (4)     (4)     (4)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5)     (5) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HFC-VWS3.5 SF3E(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HFC-WS3.5 SF3E (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HFC-VWS3.5 SF3E (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HFC-VWS 3.5 SF3E (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

d,1 (/ GN () U 2(3) Ν ~ \* 5 7 7 Ś 7 ~ 1 7 CURRENT LIMITING RES. SMOOTHING CONDENSER PRINTED BOARD (Control) CURRENT LRANSEORNER MAGNETIC CONTACTOR SHUNT RESIGTOR TRANSISCOR MODULE BALANCE RESISTOR FLY NHEEL DIODE PARTS NAME SURSE ABSOBBER CHARGING LAMP DIODE MODULE TRANSFORMER DC REACTOR CONDENSER TERMINAL RESISTOR N A A N CT 2 CHG 3 N 2 PCB RB Зd I 001 £ с) Ц) ž I 2 ž H М 9 ⊢ 07 £3 ---6 2 2 ŝ 읤 5 ŝ

m


च Ś 30 6

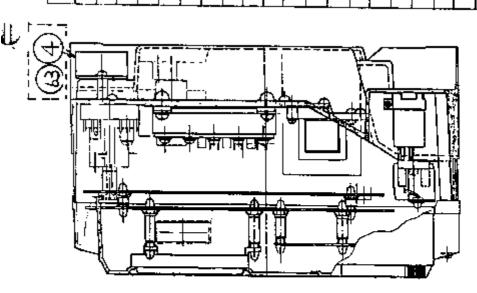
3



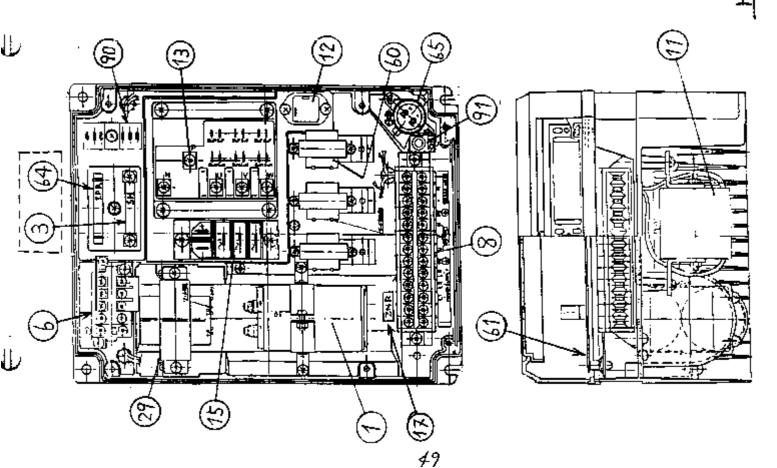

 $\tau$  /

| 1110/110   | N                   |  | -              | 4                     | 4           | Ł        |   | *          | -               | ł                 | <del>.</del> | ł              |  | ~             |  |          | 2 (3)               | *-                     | ~                | 4        | ~-        | 1             |   | ' Ţ |  |
|------------|---------------------|--|----------------|-----------------------|-------------|----------|---|------------|-----------------|-------------------|--------------|----------------|--|---------------|--|----------|---------------------|------------------------|------------------|----------|-----------|---------------|---|-----|--|
| PARTS NAME | SMOOTHING CONDENSER |  | SHUNT RESISTOR | CURRENT LIMITING RES. | C CONTACTOR | TERMINAL |   | DC REACTOR | FLY WHEEL DIODE | TRANSISTOR MODULE | DIODE MODULE | SURGE ABSOBBER |  | I RAN SFORMER |  |          | CURRENT TRANSFORMER | PRINTED BOARD (GALFOL) | BAIANCE RESISTOR | RESISTOR | CONDENSER | CHARGING LAMP |   |     |  |
| MARK       | 80<br>U             |  | ŞН             | RS                    | 84          | I.M      |   | БСL        | FD              | Md                | MQ           | ZNR            |  | -             |  |          | ст <b>2</b>         | PC3                    | RB               | 1 P.R    | 65        | C X G         | : |     |  |
| 0 ž        | -                   |  | ÷              | 4                     | 2           | -        | 1 | =          | 12              | £1 .              | 15           | 17             |  | 29            |  | <u> </u> | 50                  | 51                     | 67               | 54       | 55        | 5             |   |     |  |




HFC - VWS 3.5 HF3E(H)

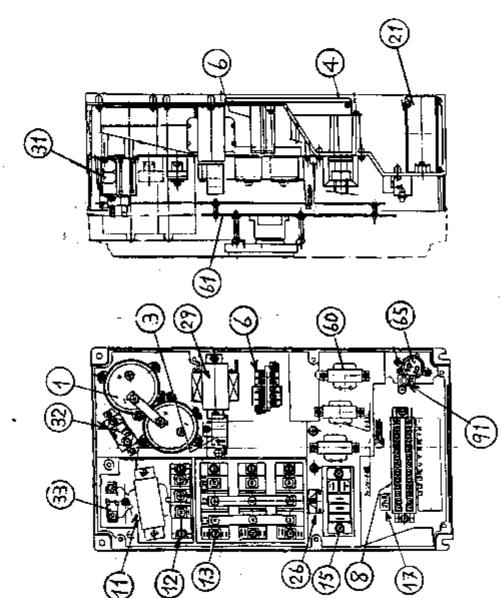


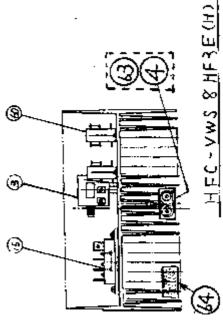

 $\mathbb{U}$ 

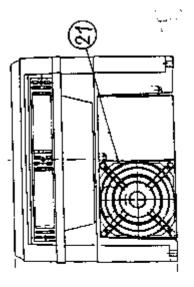
| 0.1.1/181  | ~                   |  | •              |                      | -                  | ~-       | -          | -               | -                 | -            | 1             |      | ₹           |  |  | 2(3)                | **                      |                  | 1          | 4         | 1             | -             |      |      |
|------------|---------------------|--|----------------|----------------------|--------------------|----------|------------|-----------------|-------------------|--------------|---------------|------|-------------|--|--|---------------------|-------------------------|------------------|------------|-----------|---------------|---------------|------|------|
| PARTS NAME | SMOOTHING CONDENSES |  | SHUNT RESISTOR | CURRENT LIMITING RES | MAGRETIC CONTACTOR | TERMINAL | DC REACTOR | FLY WHEEL DIODE | TRANSISTOR MODULE | DIODE MODULE | SURGE ABSOBER |      | TRANSFORMER |  |  | CURRENT TRANSFORMER | PRINTED BOARD (Control) | BALANCE RESISTOR | RESISTOR . | CONDENSER | CHARSING LAMP | BASE RESISTOR |      |      |
| MARK       | C.B.                |  | ऊ              | RS                   | 84                 | TM       | <br>0CL    | F0              | PM                | NO           | ZNR           | <br> | г           |  |  | CT 2                | PCB                     | RB               |            | CD        | CHG           | RSB           | <br> |      |
| 9          | -                   |  | m              | a .                  | 9                  | 8        | -          | 2               | 13                | 12           | -             |      | 29          |  |  | <u>б</u> П          | 61                      | 63               | 64         | 65        | 91            | 90            |      | <br> |

1



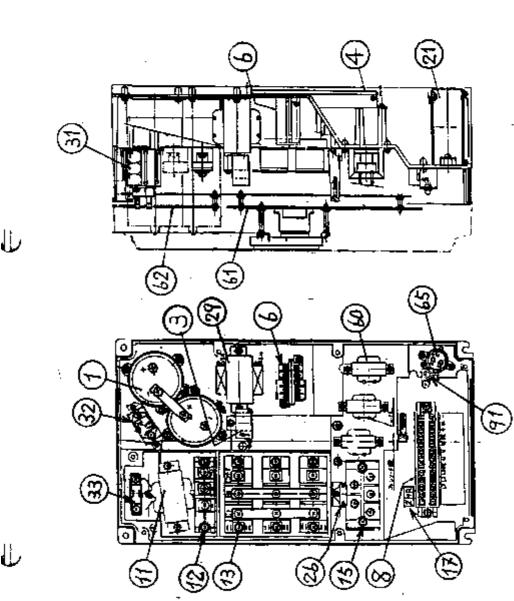

HFC - VWS 5. 5 HF3E (H)

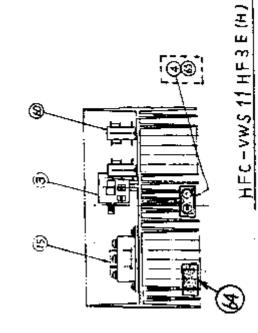


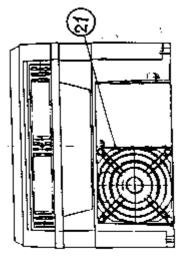


U

U

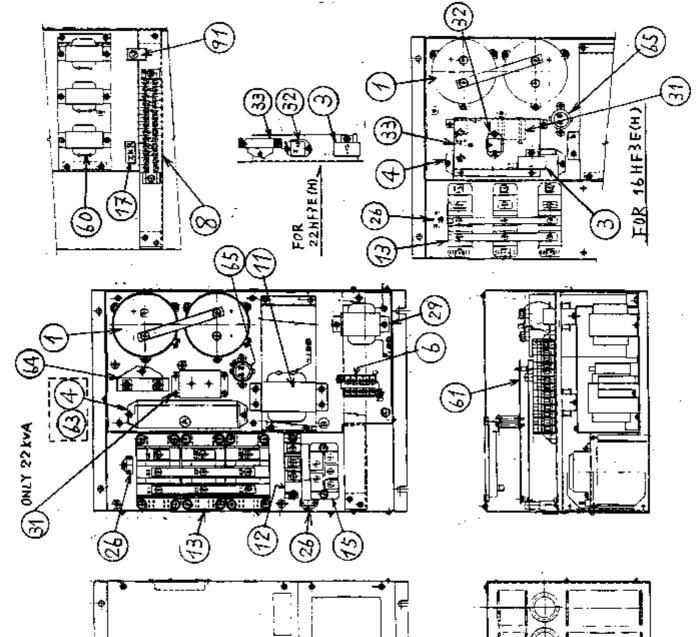
| 110/110    | 2                   |       | 1                   | ł                    | +                  | ۲        | 4          | 1               | ŝ                 | 1            | -              | 4           | 1             | <br>•       | 2                 | 4             | 4                |   | 2(3)               |                        | *                | -        |           | 4             |  |  |
|------------|---------------------|-------|---------------------|----------------------|--------------------|----------|------------|-----------------|-------------------|--------------|----------------|-------------|---------------|-------------|-------------------|---------------|------------------|---|--------------------|------------------------|------------------|----------|-----------|---------------|--|--|
| PARTS NAME | SMODTHING CONDENSER |       | CURRENT TRANSFORMER | CURRENT LIMITING RES | MAGNETIC CONTACTOR | TERMINAL | DC REACTOR | FLY WHEEL DIODE | TRANSISTOR MODULE | DIODE MODULE | SURGE ABSOBBER | COOLING FAN | THERMAL RELAT | TRANSFORMER | SNUGBER CONDENSES | SRUBBER DIDDE | SNURGER RESISTOR |   | URRENT TRANSFORMER | PRINTED BOARD(Caller ) | BALANCE RESISTOR | RESISTOR | CONDENSER | CHARGING LAMP |  |  |
| MARK       | CB                  | -<br> | <br>CT 1            | RS                   | 84                 | MT       | DCL        | ۶D              | μų                | нO           | ZNR            | FAN         | THR           | -           | C1                | 10            | ę 1              |   | CT 2               | PCB                    | R B              | 1 P.R    | 8         | CHG           |  |  |
| NG         | -                   |       | Ē                   | 4                    | . un               | 8        | 11         | 12              | 13                | 51           | 17             | 21          | 26            | 29          | 11                | 20            | 33               | ļ | 50                 | 61                     | Eŷ               | 64       | 55        | 91            |  |  |

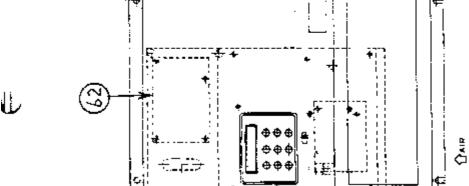


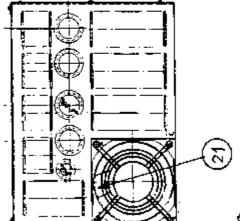




| η'ΤΥ/GNIT  | ~                   |   | -                   | 1                    | 1                  | *        | 1          | 1               | £                 | +            |                | *           | -7            |   | <b>-</b>    | لر.               | ◄             | ₹-               | <br>- |                                                        |      |          | -           | ~             | -                |
|------------|---------------------|---|---------------------|----------------------|--------------------|----------|------------|-----------------|-------------------|--------------|----------------|-------------|---------------|---|-------------|-------------------|---------------|------------------|-------|--------------------------------------------------------|------|----------|-------------|---------------|------------------|
| PARIS NAME | SMOOTHING CONDENSER | r | CURRENT TRANSFORMER | CURRENT LIMITING RES | MAGNETIC CONTACTOR | TERMENAL | DC REACTOR | FLY WHEEL DIDDE | TRANSISTOR MODULE | DIDDE MODULE | SURGE ABSOBBER | COOLING FAN | THERMAL RELAY |   | TRANSFORMER | SAUBBER CONDENSER | SAUBBER DIODE | SHUBBER RESISTOR |       | LUXKERI IKANJ <u>rukaca</u><br>Dointen Daada <i>ta</i> | 2    | KE3131UK | <u>م</u> اً | CHARGING LAMP | BALANCE RESISTOR |
| ****       | CB                  |   | cr1                 | RS                   | 84                 | H        | 0CL        | £0              | Md                | M            | ZNR            | FAN         | ТНЯ           |   | F           | 10                | 10            | R 1              |       | 2 0.00                                                 | 80 A | ¥        | 0           | снG           | 83               |
| e<br>e     | _                   |   | Ē                   | -<br>-               | œ                  | 8        | -          | 12              | 13                | 15           | 17             | 21          | 26            | i | 29          | 16                | 32            | 33               |       |                                                        | 2    |          | 65          | <u>5</u>      | 63               |


*~* /






| ~     | CHASSING LAMP           | ςΗG       | 16        |
|-------|-------------------------|-----------|-----------|
| ~     | CONDENSER               | CD.       | 65        |
|       | RESISTOR                | [PR       | 64        |
| 4     | BUFFER PCB              | PCB       | 23        |
| *     | PRINTED BOARD (CONCONT) | PC3       | 61        |
| 2 (3) | CURRENT TRANSFORMES     | c12       | 60        |
| 4     | BALANCE RESISTOR        | 92        | £9        |
|       |                         |           |           |
| 1     | SNUBBER REALSTOR        | j ji li   |           |
| 4     | SQUID ESHONKS           | 10        | 2         |
| 1     | SNUBBER CONDERSER       | 5         | 91        |
| 4     | TRANSFORMER             | -         | 53        |
|       | i                       |           |           |
| 2     | THERMAL RELAY           | H H       | 26        |
| 1     | COOLING FAN             | FAN       | 21        |
| 1     | SURGE ABSOBER           | 2 M R     | 17        |
|       | _                       |           |           |
| 1     | DIDDE WOONTE            | ٣O        | 5         |
| 3     | TRANSISTOR MODULE       | Ыđ        | 13        |
| 1     | FLY WHEEL DIODE         | FO        | 12        |
| 4     | DC PEACTJR              | 001       | 1         |
|       |                         | · ·       |           |
| 1     | TERMINAL                | τM        | æ         |
| 1     | MAGNETIC CONTACTOR      | 84        | ę         |
| 1     | CURRENT LIMITING RES.   | Sa        | 4         |
| _1    | CURRENT TRANSFORMER     | c1 -      | -         |
|       |                         |           |           |
|       |                         |           | <br> <br> |
| 2     | SMOOTHING CONDENSER     | <b>CB</b> | -         |
| 2500  | PAGTS MAME              | MARK      | 0*        |
|       |                         |           |           |
|       | U                       |           |           |
|       |                         |           |           |



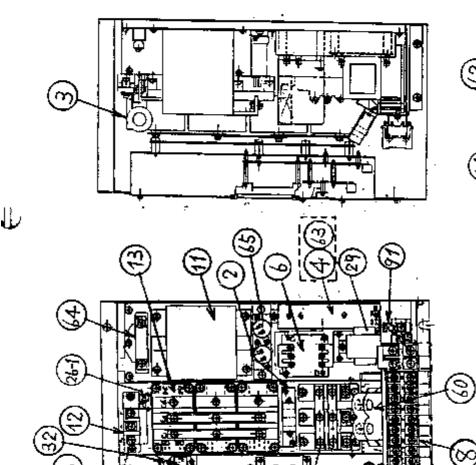


U

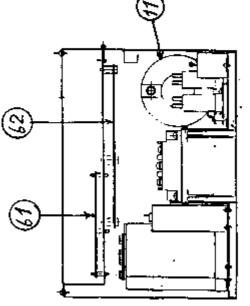


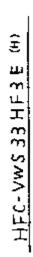
HFC - VWS 16, 22 HF3E(H)

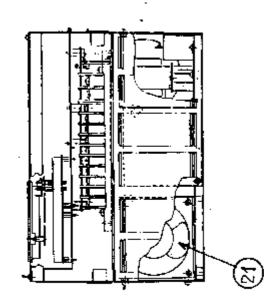
Ŀ


 $\alpha$ 

ф

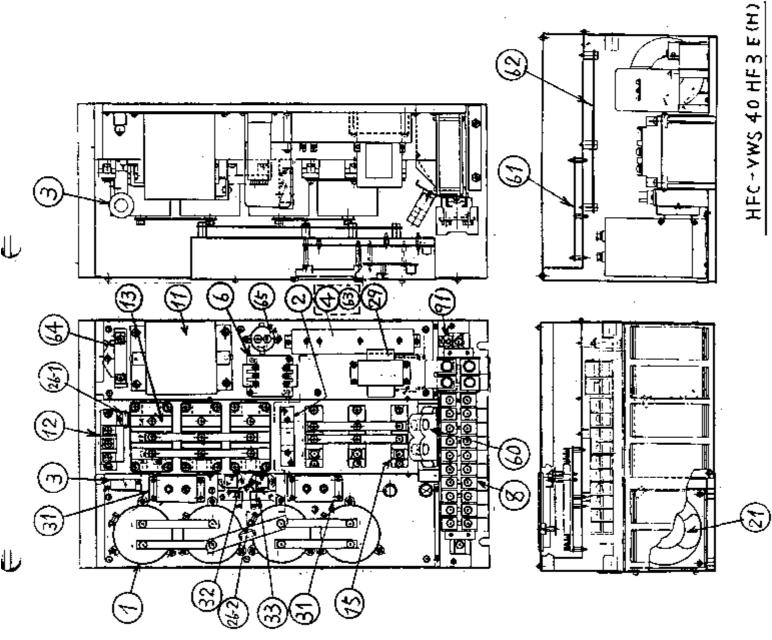

2


 $\mathbb{U}$ 

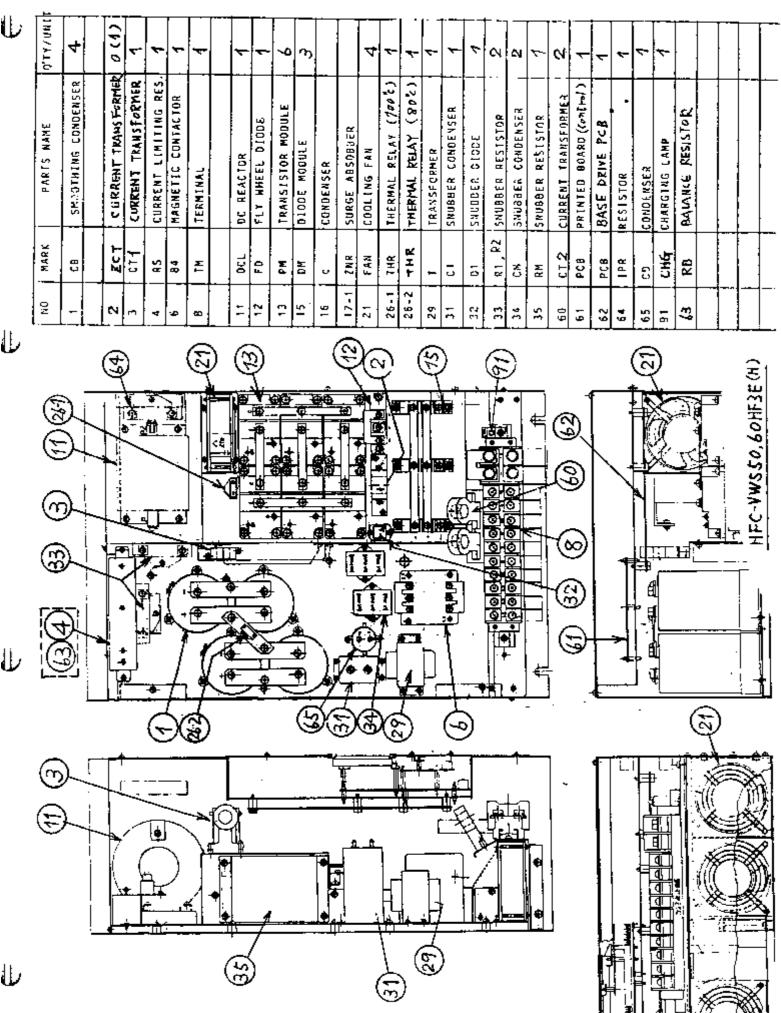

| 196.731.0  | 4                   |                | 0 (1)        | 1                   | ŀ                     | 1                  | 1        | ۲          | Ļ               | ÷                 | m            | 4              | 2           | ~                     | <u>۲</u> -         | 1           | 4                 | 1             | ₹-               | 1                | <del>-</del> -      | £-                      | 4              | 1        | 2         | 1             | i |  |  |
|------------|---------------------|----------------|--------------|---------------------|-----------------------|--------------------|----------|------------|-----------------|-------------------|--------------|----------------|-------------|-----------------------|--------------------|-------------|-------------------|---------------|------------------|------------------|---------------------|-------------------------|----------------|----------|-----------|---------------|---|--|--|
| PARTS NAME | SMOOTHING CONDENSER | L ONLY 33HF3EH | CT FOR G.F.P | CURRENT TRANSFORMER | CURRENT LIMITING RES. | MAGNETIC CONTACTOR | TERMINAL | DC REACTOR | FLY WHEEL DIGDE | TRANSISTOR MODULE | DIDDE MODULE | SURGE ABSOBBER | COOLING FAN | THERMAL RELAY (100 C) | THEMAL RELAY (80%) | TRANSFORMER | SAUBBER CONDENSER | 30010 a3601w3 | SNUBBER RESISTOR | BALANCE RESISTER | CURRENT TRANSFORMER | PRINTED BOARD (control) | BASE DRIVE PCB | RESISTOR | CONDENSER | CHARGING LAMP |   |  |  |
| MARK       | 68                  |                | ХСТ          | CT 1                | 5 X                   | 84                 | MT       | סכר        | FD              | Hd                | M            | ZMR            | F AN        | THR                   | THR                | 1           | 5                 | 61            | - ¥              | RĜ               | ст <b>2</b>         | PCB                     | PCB            | 1P8      | 5D -      | СНG           |   |  |  |
| 9N         | -                   |                | 2            | E                   | 4                     | 6                  | . 8      | 11         | 12              | 13                | 15           | 17             | 121         | 26-1                  | 26-2               | 29          | 11                | 32            | 33               | 63               | 60                  | 61                      | 62 '           | 64       | 65        | 16            |   |  |  |



o

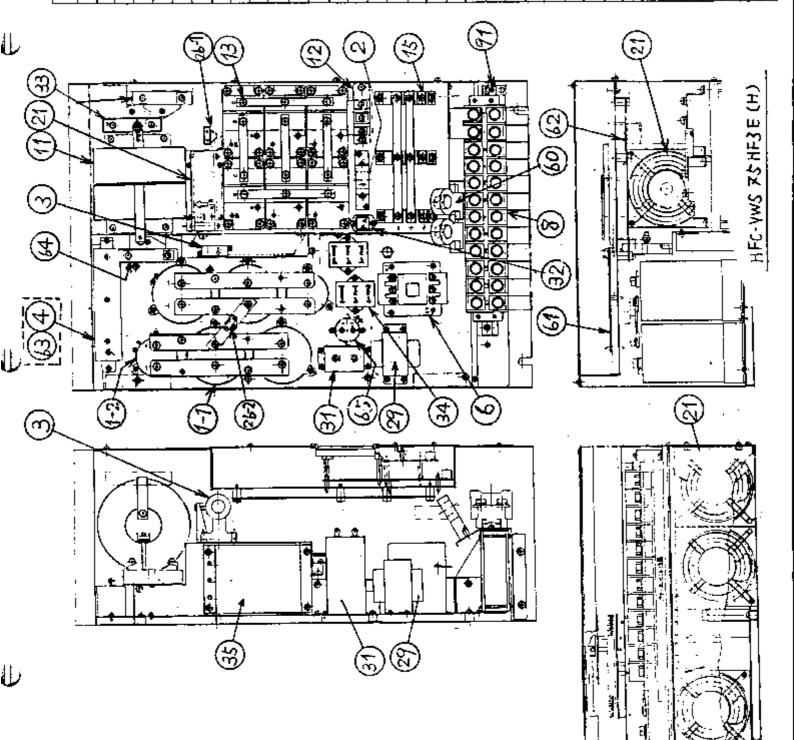





A

| 0'FY/URL   | 4                   |               | 0.60                | +                   | +            | -          | -        | 4          | 1               | m                 | رب<br>ا      |                | η           |                        | 4                    | 4            | 2                 | 7             | 'n               | 1 | <b>~</b> -      | -                    | ~                       | *-             | 1        | +         | 1             |  |
|------------|---------------------|---------------|---------------------|---------------------|--------------|------------|----------|------------|-----------------|-------------------|--------------|----------------|-------------|------------------------|----------------------|--------------|-------------------|---------------|------------------|---|-----------------|----------------------|-------------------------|----------------|----------|-----------|---------------|--|
| PARTS RAME | SMODTHING CONDENSER | CONTY 40HE3EH | CURRENT TRANSFORMER | CURRENT TRANSFORMER | LIMITING RES | C CONTACTO | TERMINAL | DC REACTOR | FLY WHEEL DIDDE | TRANSISTOR MODULE | DIQUE MODULE | SURGE ABSOBBER | COOLING FAN | THERMAL RELAY ( JOP &) | THERMAL RELAY (80 %) | I RANSFORMER | SNUBBER CONDENSER | SNUGAFD DIDDE | SAUDALM RESISTUR |   | BARANCE REUSTOR | ICURRENT TRANSFORMER | PRINTED BOARD (CONLINA) | BASE DRIVE PCB | RESISTOR | CONDENSER | CHARGING LAMP |  |
| MARK       | 6.0                 |               | 201                 | CT 1                | RS           | 84         | Ŧ        | OCL        | f D             | Wđ                | MO           | ZNR            | FAN         | THR                    | THR                  | L            | C1, C2            | 01, DZ        | k⊥, R2           |   | R.B             | CT <b>2</b>          | PCB                     | PCB            | JPR      | 5         | CH6F          |  |
| N C        |                     |               | ~                   | ~                   | -            | G          |          | -          | 12              | 13                | 15           | -              | 21          | 26-1                   | 26-2                 | 29           | ŧE                | 32            | 33               | , | 63              | 60                   | 61                      | 62             | 49       | 55        | 5             |  |




54



Ę

 $\rangle \rangle$ 



 $\mathbb{U}$ 

### Comparison of function of terminals

.

.

| 1/0 signal                                                                                                       | Terminal<br>symbols | VWS3 series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Terminal<br>symbols | VWS2,VWS1 series                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start/stop<br>operation<br>command<br>Forward<br>operation<br>command(FW)<br>Reverse<br>operation<br>command(RV) | Fx                  | Frequency is set in "Monitor mode"<br>and START/STOP command is selected<br>in "Terminal mode" by D-OPE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>Ó<br>L<br>FR   |                                                                                                                                                                                                                                                         |
|                                                                                                                  |                     | SWF JON .Forward rotation<br>[DFF :Reverse rotation<br>SWR [ON :Reverse rotation<br>[OFF :Stop<br>When SWF and SWR are ON at the<br>same time.output turns off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | SW1 {ON :Forward rotation<br>{OFF :Stop<br>SW2 {ON :Reverse rotation<br>{Off :forward rotation                                                                                                                                                          |
| frequency<br>setting<br>command<br>{Voltage<br>input}                                                            | D<br>L              | <ul> <li>When the voltage between D and L<br/>is 10V.frequency becomes maximum.</li> <li>The voltage between H and L is<br/>regulated as 10V (AVR).</li> <li>500~2k∝resistor is available<br/>for VRO because of AVR.</li> <li>When the analogue command(0-L) is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Ľ              | When the voltage between 0 and<br>is 10V.frequency becomes maximum<br>(a) The voltage between H and 1<br>is 10v.<br>(b) When the value of VRO is 500<br>the voltage(H-L) is 10V.<br>(c) When the value of VRO is 1kg.,<br>the voltage becomes as follow |
|                                                                                                                  |                     | applied,the gain and bias of<br>frequency can be adjusted by means<br>of D-OPE(F-26(F-START),F-27(F-END))<br>Fmax<br>can be adjusted by F-3(+fmax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 1000_x 12 <sup>4</sup> = 11 <sup>4</sup><br>1082 x 12 <sup>4</sup> = 11 <sup>4</sup><br>Vk0 mustn't be set as more<br>than 90% because the voltage<br>exceeds normal voltage by 10%<br>when 1kΩused.                                                    |
| Frequency<br>setting<br>command<br>(current<br>input)                                                            | 01<br>i.            | f-]\$we ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>Ľ             |                                                                                                                                                                                                                                                         |
|                                                                                                                  |                     | Input impedance : 250 A<br>reading the start (F.START) and end<br>(F.START) and (F.START)                      | Input impedance : 500 A<br>BI-NVI2 shortcircuited : 4~20<br>open : 0~16                                                                                                                                                                                 |
| Frequency<br>manitof<br>signs]<br>(Current<br>input)                                                             | FM                  | The inverse mode can be set.<br>The frequency monitor signal(FM)<br>can be transmitted by selecting 2<br>types of signals.Selection is done<br>by D-OPE(F-28,switch 3)<br>Monitor for analogue meter<br>(100 Full scale<br>(Load resistance: 10~22km IMA max<br>(1) This monitor outputs the duty<br>(t/T) proportional to the output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AI<br>L             | Analogue meter is available.                                                                                                                                                                                                                            |
| <br> <br> <br> <br> <br> <br> <br>                                                                               |                     | frequency.<br>(Adjust the variable resistor<br>{M.ADJ} and the variable resistor<br>of frequency counter itself so<br>that the meter is maximum at the<br>highest frequency.<br>Digital monitor for frequency<br>counter<br>The monitor output is as follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | D~10¥ Full scale<br>(Load resistance:10~22kA 1mA                                                                                                                                                                                                        |
| Fault reset                                                                                                      | R5<br>L             | Reset is possible after 1.5 10sec<br>have passed since power supply<br>turns off.<br>(The time depends on models.)<br>RS-L isclosed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŘS<br>Ĺ             | Reset is possible after 0.5.2<br>have passed since power supply<br>turns off.<br>(The time depends on models.)<br>RS-1 isclosed.                                                                                                                        |

- /

•

```
CABINET VOLUME/SURFACE AREA TO HOUSE HFC-VWS UNITS
 6-6
(IP55)
(CONDITIONS)
1.Ambient Temp. of OUTSIDE
                                          ;max.40°C
2.Ambient Temp, of INSIDE
                                           ;max.50°C
3.Heat radiation efficiency
                                           ; E = 0.92
4.Ratio of dimensions of cabinet
                                             9
                                                         6
                                                                  16
                                           (Wldth) (Depth) (Hight)
5.INVERTER generation loss
                                         (P = 0.05 \times INV(kVA) \times 10^{3}(W)
6.Location of cabinet(Worst case)
                                          ; IN AIR
(FORMULA)
Heat loss by CONVECTION: Pc = 1.85 \times \Delta Ts^{1.25} \times Sc(W)
Heat loss by RADIATION ; Pr = 5.67 \times 10^{-8} \times E \times ((T + dT_5)^4 - T^4)) \times Sr(W)
    P = Pc + Pr
where to:
d Ts
       ;Temp.rise on the surface of cabinet(°C)
  T
         ;Ambient Temp.(°X)
Sc,Sr : ;Effective surface area(m<sup>2</sup>)
Then,
        T = 273 + 40 = 313(°K)
       4Ts = (50-40)/2 = 5(°C)
Pc = 13.9 \times Sc, Pr = 32.8 \times Sr
if 5c = 5r.
  P = 46.7 \times Sc
(RESULT)
                                SURFACE(m<sup>2</sup>)
               INV.LOSS(W)
                                                   CABINET DIMENSIONS(m)
INV.(KVA)
                                                     W x D x H
                                    Sc
                    P
                                                   0.47 x 0.31 x 0.84
                   75
                                  1.61
 1.5
2.5
                  125
                                 2.68
                                                   0.61 x 0.41 x 1.08
3.5
                  175
                                 3.75
                                                   0.72 x 0.48 x 1.28
                                                   0.90 x 0.60 x 1.60
 5.5
                                 5.89
                  275
                                                   1.05 x 0.70 x 1.87
7.5
                                8.03
                 375
                                                   1.28 x0.85 x 2.27
                                11.8
11
                 550
                                                   1.49 x 1.00 x 2.64
                 750
                                16.1
15
                                                   1.80 x 1.20 x 3.20
                 1100
                                23.6
22
                                                   2.21 x 1.47 x 3.92
                 1650
                                35.3
33
                                                   2.43 x 1.62 x 4.32
40
                 2000
                                 42.8
                                                   2.97 x 1.98 x 5.28
                 3000
                                 64.2
60
                                                    3.21 x 2.14 x 5.71
                                 74.9
70
                 3500
```

 $\mathcal{I}\mathcal{I}$ 

U

U

U

U

NOTE : After building cabinet, Temp.rise should be tested. If cooling fins are put on cabinet , dimensions have to be smaller.

This CALUCULATION is only for REFERENCE at your own DESIGHN WITHOUT Hitachi GUARANTEE.

(FOR YOUR REFERENCE) (IP23)

U

U

 $\mathbb{U}$ 

U

5-7 SELECTION OF VENTILATING FAN OF INVERTER BOX

When the inverter unit shall be received in the box, it is necessary to keep the ambient temperature as follows:

Enclosed wall mount type(A,& B type) Not exceed 40°C Open wall mount type(C type) Not exceed 50°C

Then please install ventilating fan to ventilate well.

- 1 Inverter capacity, necessary ventilation and ventilating hole area
  - The calculation examples are given in the list below.
     [Q is in case of 10°C at temperature (ΔT=10°C)]

|          |              | Н                  | G           | S           |
|----------|--------------|--------------------|-------------|-------------|
| Inverter | Inverter     | Inverter           | Necessary   | Ventilating |
| capacity | generation   | calorific          | ventilatión | hole area   |
|          | loss(approx. | value              | T=10 C      | (minimum)   |
| (k∪A)    | value)(KW)   | (Kca <u>l/hr</u> ) |             | <u>(m2)</u> |
| 1.5      | 0.075        | 64.5               | 0.37        | 0,004       |
| 2.5      | 0.13         | 108                | 0.62        | 0.005       |
| 3.5      | 0.18         | 151                | 0.87        | 0.010       |
| 5.5      | 0.28         | 237                | 1.37        | 0.015       |
| 7.5      | 0.38         | 322                | 1.87        | 0.02        |
| 11       | 0.55         | 473                | 2.74        | 0.03        |
| 15       | 0.75         | 645                | 3,73        | 0.04        |
| 22       | 1.1          | 946                | 5.47        | 0.06        |
| 33       | 1.7          | 1419               | 8.21        | 0.09        |
| 40       | 2.0          | 1720               | 9.95        | 0.11        |
| 50       | 2,5          | 2150               | 12.4        | 0.14        |
| 60       | 3.0          | 2580               | 14.9        | 0.16        |
| 70       | 3.5          | 3010               | 17.4        | 0.29        |
| 100      | 5.0          | 4300               | 24.9        | 0.28        |
| 120      | 6.0          | 5160               | 29.9        | 0.33        |
| 150      | 7.5          | 6450               | 37.3        | 0.42        |
| ***      |              |                    |             |             |

2. Calculation formula

Q=\_\_\_

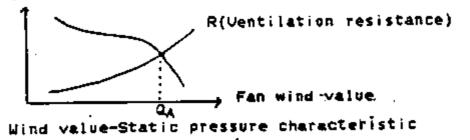
K X AT X 60

н

G: Necessary ventilation (m<sup>3</sup>/min)

- H: Inverter calorific value (Kcal/hr)
- Total value if having other heating power K: Constant
- F.Cp=0.29(Kcal/m³C) T: Specific gravity of air=1.2(kg/m³)
- (Cp: Specific heat of air=0.24(Kcal/kg "C)
- AT: Allowable temperature rise( "C)

Remarks: 1KW=860Kcal/hr


# 2 Consideration of fan selection

Necessary ventilation Q shall be calculated in the way above mentioned. Fan shall be chosen considering the following matters.

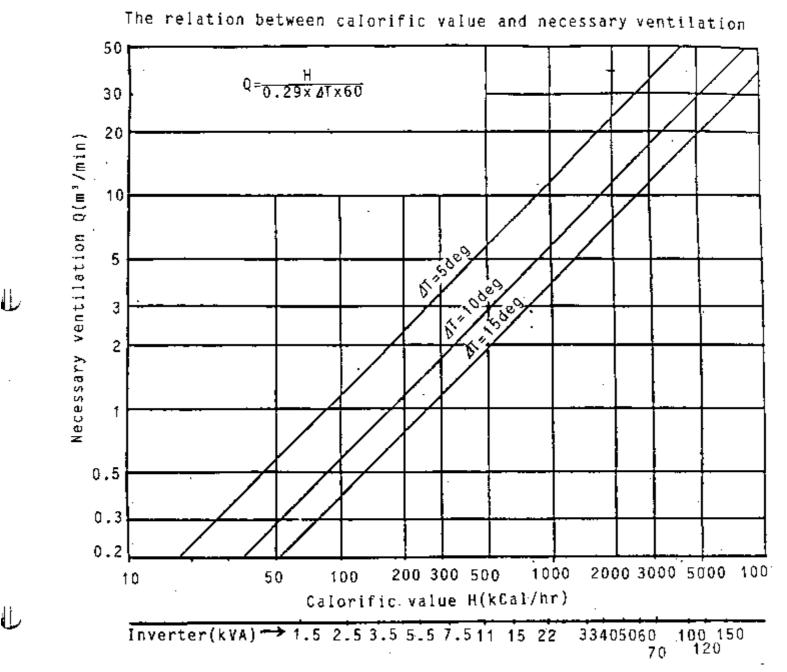
0 0

1. In case of mounting the filter at the ventilating entrance, operating point GA shall be calculated according to G-H curve of the fan.

Wind pressure



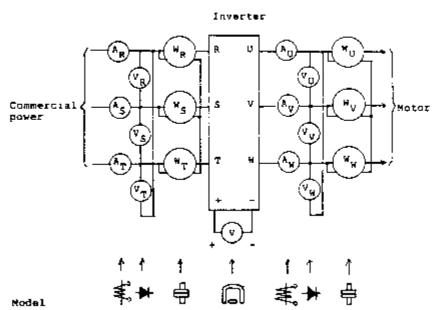
6 D


 In case of bad ventilation because of fully mounting in the box, it is also the same as the mentioned above.

U

U

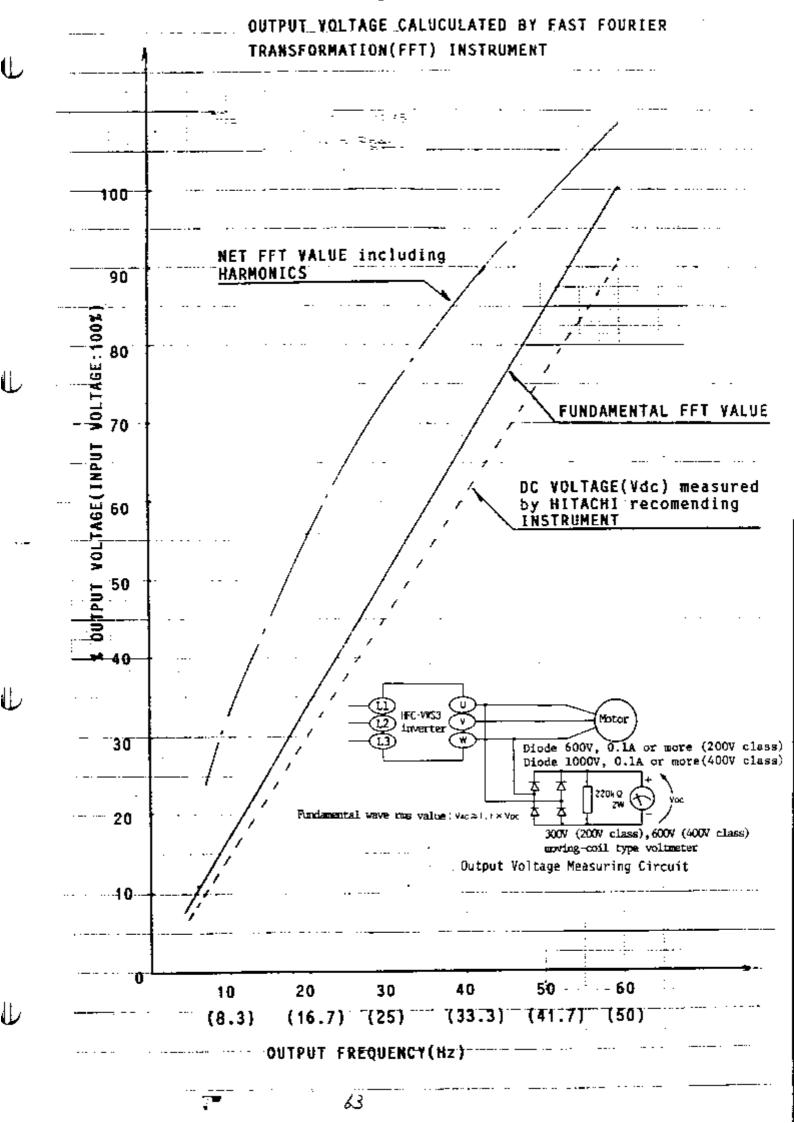
U






## <u>6-8 HOW TO MEASURE THE VOLTAGE,</u> <u>CURRENT AND POWER</u> <u>MEASURING INSTRUMENTS AND MEASURING POINTS</u>

U


Ŀ



|  | r | • |
|--|---|---|

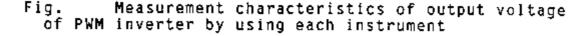
| Measuring<br>items                        | Measuring<br>points         | Measuring Remarks<br>instruments (Measuring<br>value)                          |
|-------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| Input voltage<br>V1                       | Between<br>R-S,S-T,<br>T-R  | Moving Commercial<br>iron-type power<br>or<br>Rectifier- 50Hz 180~230V<br>type |
| Input current<br>I1                       | R,S,T(Line<br>current)      | Moving<br>iron-type                                                            |
| Input power<br>P1                         | R,S,T or<br>R-S,S-T,<br>T-R | Electro- $P1 = W_R + W_V + W_T$<br>dynamic- (Use 3 same<br>type type units)    |
| Input power<br>factor<br><sup>p</sup> f1  |                             | P1 x 100 (%)<br>V1 - I1                                                        |
| Output<br>voltage<br>V2                   | Between<br>U-V,V-W<br>W-U   | Rectifier-<br>type<br>(Not moving iron-<br>iron-type)                          |
| Output<br>current<br>12                   | U,V,W                       | Hoving iron-                                                                   |
| Output power<br>P2                        | U,V,W<br>U-V,V-W;<br>W-U    | Electro- $P^{1=W}U^{+W}V^{+W}W$<br>dynamic- (Use 3 same<br>U type type units)  |
| Output power<br>factor<br><sup>P</sup> f2 | $P_{f2} =$                  | well as input power factor.<br><u>P2</u><br>3V1 · I1                           |
| Converter<br>output<br><sup>V</sup> CB    | Between<br>(+) and (-)      | Moving iron-<br>type<br>(Tester is O.K.)                                       |

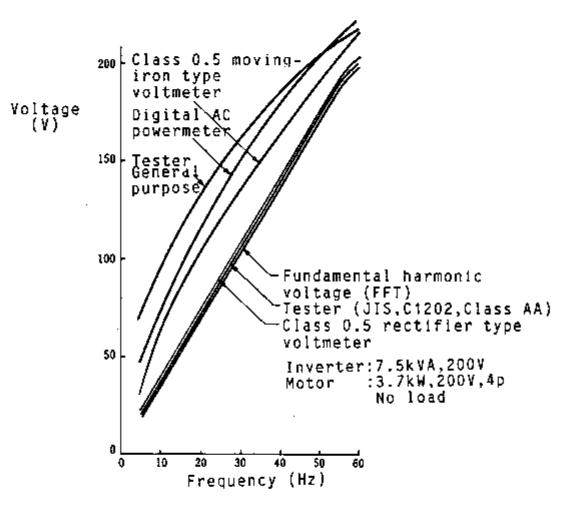
U



U

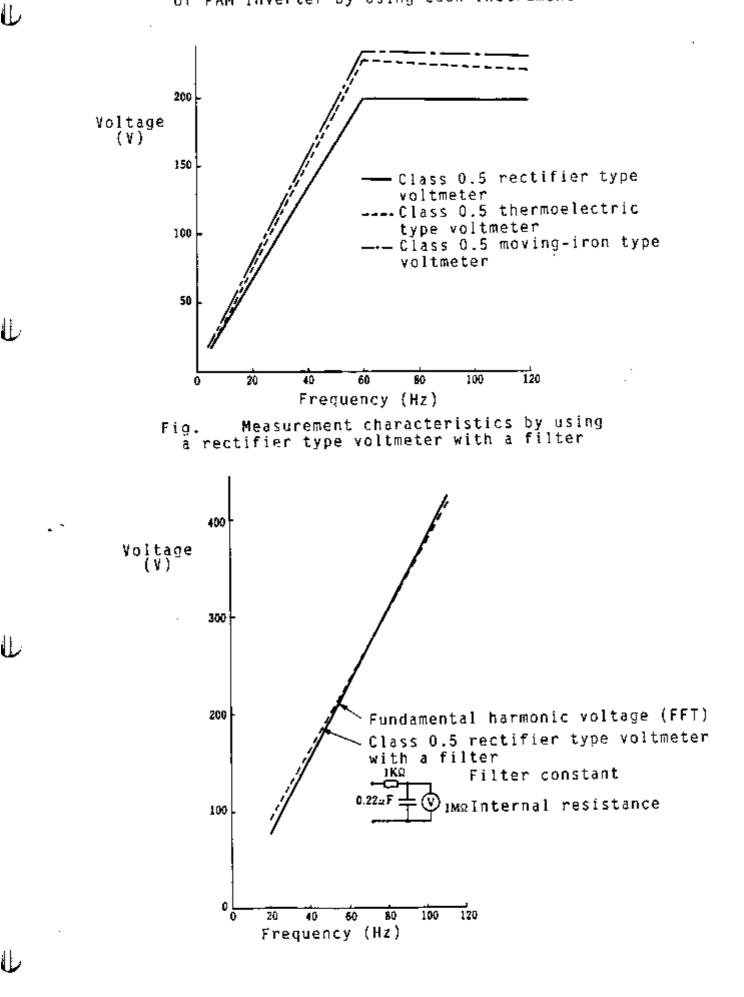
#### Output voltage


When you measure the fundamental harmonic effective value of output voltage, you can use a rectifier type voltmeter. There are many type voltmeters such as moving-iron type and thermoelectric type. The rectifier type voltmeter indicates the nearest value of the fundamental harmonic effective value.


Fig. shows the measurement characteristics of output voltage of PWM inverter by using each instrument and Fig. shows those of PAM inverter. The indication of the rectifier type shows a good lineality against the operating frequency and an approximate value of the fundamental harmonic effective value (FFT).

You can get more approximate value of it by using a rectifier type voltmeter with connecting a filter to output terminals like Fig. when you measure the output voltage of PWM inverter which generates, reverse voltage between output terminals eachtime PWM switches.

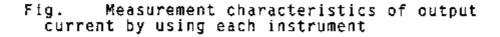
U

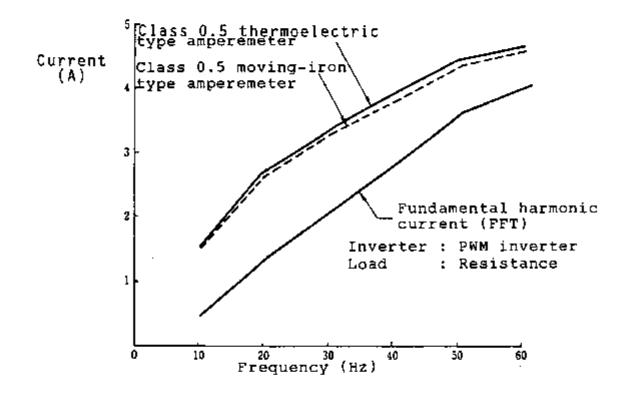

U





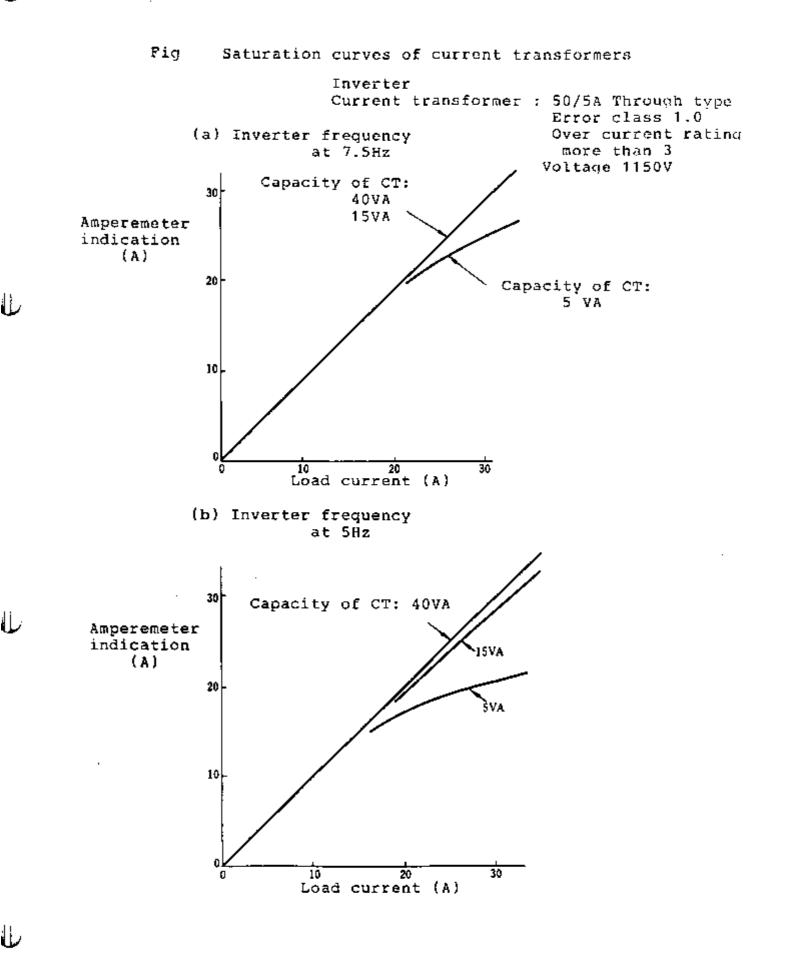
 $\mathbb{L}$ 

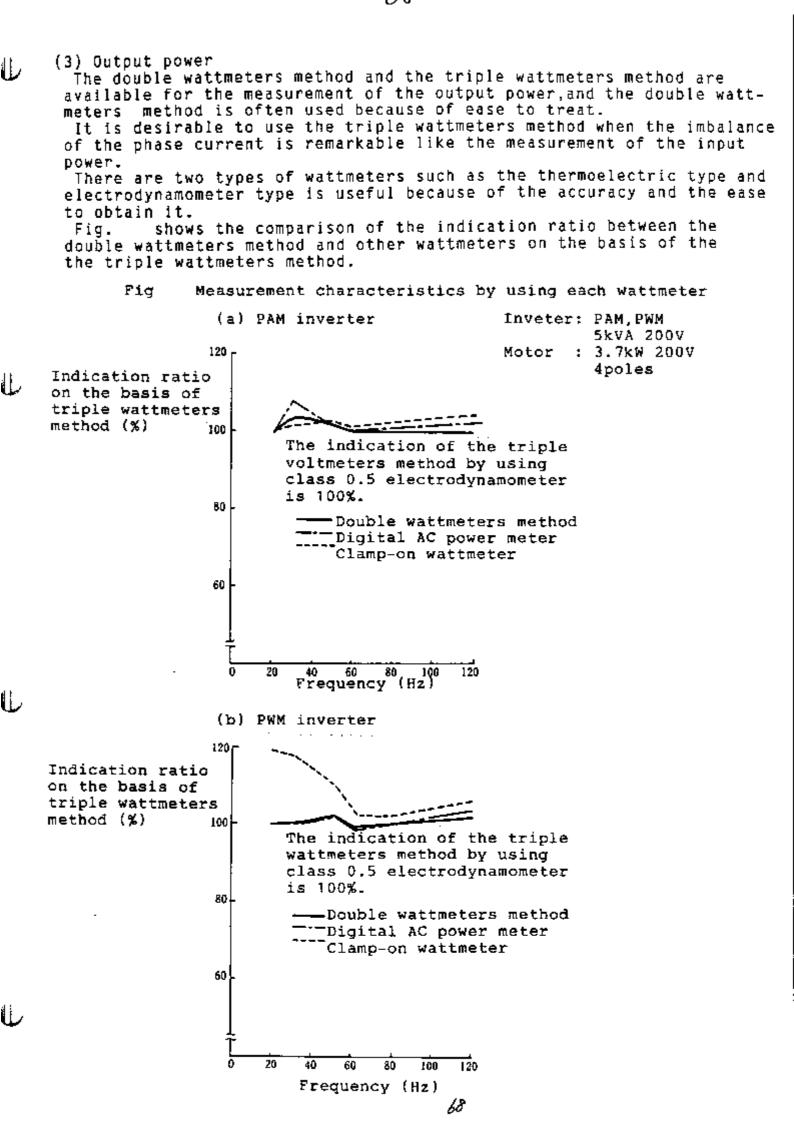

Fig. Measurement characteristics of output voltage of PAM inverter by using each instrument




(2) Output current When you measure the output current, you can use a moving-iron amperemeter because of necessity for the measurement of total effective current. In case of the measurement of the effective current a thermoelectric type amperemeter is also available, but in many cases a moving-iron amperemeter is used due to ease to treat. Fig shows the comparison betwen measurement characteristics of the thermoelectric type amperemeter with resistance load and that of the moving-iron type amperemeter. (There is a little difference between the fundamental harmonic current and total effective current in case of an actual motor load.)

It is necessary to check the capacity of the current transformer when you use it because some current transformer saturate themselves in low frequency.


Fig. shows the saturation curves of current transformers in low frequency.






Ψ

U





Ŀ

NOTE : Both (a) and (B) show the indication ratio as the indication of the triple wattmeters method is 100% while the torque is constant from OHz to 60Hz and the power is constant for more than 60Hz.

- (4) Power factor of inverter It is impossible to measure the power factor of the inverter by a power factor meter because the output frequency changes.
- NOTE: It is possible to calculate the power factor through the output voltage, the output current and the output power. But there is difference between the power factor as is usually expressed and that which is obtained by calculation because of the difference of the measurement of higher harmonics. So the power factor of the inverter isn't ordinarily measured.
  - (5) Measured efficiency of inverter The measured efficiency of the inverter is defined as the ratio of the output active power and the input active power of the inverter.

Measured efficiency (%) = <u>Output active power</u> x 100 (%)

# U

U

(6) Output frequency In many cases the output frequency of the inverter is output from the inverter as the analogeue voltage or the pulse signal of frequency control. So the output frequency is not measured directly by the output voltage but measured by the frequency control signal. The pulse signal is measured by a counter. The ratio of the pulse signal and the output frequency is different among the manufacture. When you measure it, it is necessary to ask the manufacturter.

# 6-9 RUSHING CURRENT WHEN POWER SUPPLY IS TURNED ON

U

U

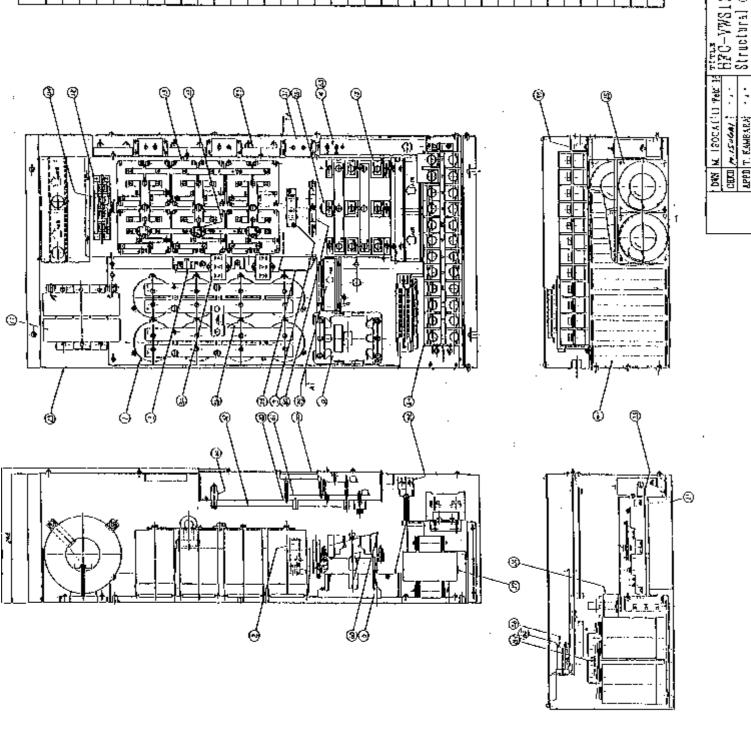
.

U

| Model                                 | Rushing current | Charging time                                        |                         |
|---------------------------------------|-----------------|------------------------------------------------------|-------------------------|
| HFC-VWS3 1.5 SF3E                     |                 |                                                      |                         |
| 2.5 SF3E                              | 404             | 3.78                                                 |                         |
| 3.5 SF3E                              | 404             | 5.67                                                 |                         |
| 2.5 HF3E                              | 283             | 3.36                                                 |                         |
| 3.5 HF3E                              | 283             | 4.92                                                 |                         |
| 5.5 HF3E                              | 283             | 6.00                                                 |                         |
| 8 HF3E                                | 283             | 6.60                                                 |                         |
| 11 HF3E                               | 435             | 5.28                                                 |                         |
| 16 HF3E                               | 435             | 9.18                                                 |                         |
| 22 HF3E                               | 808             | 5.88                                                 |                         |
| 33 HF3E                               | 1414            | 4.68                                                 |                         |
| 40 HF3E                               | 1414            | 5_64                                                 |                         |
| 50 HF3E                               | 1414            | 5.64                                                 |                         |
| 60 HF3E                               | 1414            | 6.72                                                 |                         |
| 75 HF3E                               | 1414            | 9.96                                                 |                         |
|                                       |                 |                                                      |                         |
|                                       |                 |                                                      |                         |
| RS                                    | curr            | V class:Vo=200V<br>V class:Vo=400V)<br>ing<br>ent(A) | Condens<br>voltage<br>A |
| ₽v₀                                   | Св              | IMax.                                                | 0.95                    |
| $I = \frac{\sqrt{2}V}{RS}OEXP(-CB-R)$ | <del>5.</del> ) | 5% 0<br>0<br>Time(S                                  | 37                      |
| 7=CB⋅RS(time co                       | nstant)         |                                                      | , ,                     |

| ENGINEERI               | NG SHEET                          | 备号<br>SEND.  | ES0459X       | 頁<br>SHEET       | 1/4           |
|-------------------------|-----------------------------------|--------------|---------------|------------------|---------------|
| 約<br>先<br>CUSTOMER      |                                   |              |               | が正回数<br>REV. No. | <u></u>       |
| 品名                      |                                   |              |               | 2                | 11. Mar. '96  |
| EQUIPMENT               | HFC-VWS100 to 15                  | OHF3EA       |               | 3                |               |
| 题 名<br>SUBJECT          | Strustual Drawin                  | g            |               |                  |               |
|                         | nering sheet is at<br>to 150HF3EA | tached the   | structual d   | rawin            | gs for        |
| Deset                   | 4.                                |              |               |                  |               |
| Drawing nu<br>3T816113  | mber;<br>: for VWS100HF3EA        |              |               |                  |               |
|                         | : for VWS120HF3EA                 |              |               |                  |               |
|                         | : for VWS150HF3EA                 |              |               |                  |               |
| ▲ 37816479              | 1 : for VWS180HF3EA               | 4            |               |                  |               |
|                         |                                   |              |               |                  |               |
|                         |                                   |              |               |                  |               |
|                         |                                   |              |               |                  |               |
|                         |                                   |              | -             |                  |               |
|                         |                                   |              |               |                  |               |
|                         |                                   |              |               |                  |               |
| 用途                      | 発 行 先                             | DISTRIBUTION | 相当部<br>ISSUED | F<br>BY I        | nverter Gr    |
| 8, 2, 2 i D FORAPPROVAL | BAS-SN / NELCO 1                  |              | 作 成<br>DAT    | <b>D</b>         | 21, Feb, 1996 |
| FORINFORMATION          |                                   |              | 担<br>PREP     | _当!<br>          | 1. ISOGAI     |
|                         |                                   |              | 番<br>CHKD     | 査                | A 10.0 AL     |
|                         |                                   |              | APPD          |                  | 1. 15. GAI    |

| øt                                               |     | <u>د</u>        |                                                                           | #                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|-----|-----------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |     |                 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                     |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |     | 10 <sup>2</sup> | Ccoling<br>Thermal<br>Thermal<br>Snubbez<br>Snubbez<br>Snubbez<br>Snubber | Snubber resistor<br>3)ods module for bass drive<br>7 Transformer<br>Current transformer<br>B Printsc bassd (control)<br>B Base drive PCB<br>Base drive PCB<br>Bastator | ED Charging Lize<br>MBL Digital operator<br>ED Charging Lize<br>MHEACHILICH SALKAGHTHO VORKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| │ <del>│                                  </del> | ~   |                 | 비난단이어어야                                                                   | ━╎┈┊╡─╎╴┇╴╎╴┇                                                                                                                                                          | 65 00<br>66 27<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  |     |                 |                                                                           |                                                                                                                                                                        | Providence August Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
|                                                  |     |                 |                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  | 9 9 |                 |                                                                           | ېلىك<br>ھ                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |     |                 |                                                                           | S L                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


(<sup>\*\*</sup>)

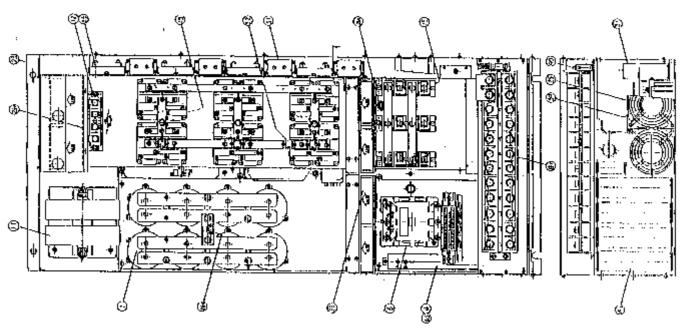
---

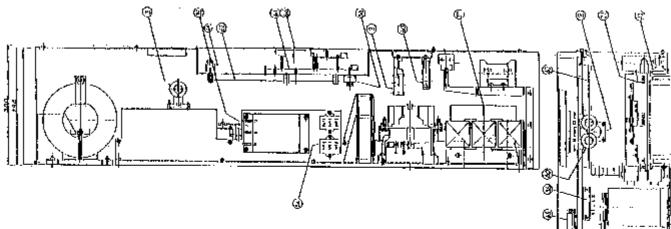
ř

• •

|                |                     | <br>                |                       |                       |                    | А                           |                                |            |                |                   |              |           |                | <b>,</b> |       |         |        |             |                       |                       |                   | P.             |                  |                  |                  |                                 |             |                     |                         | N              |                              |               | Γ         |                  |               |   |                        | À      |
|----------------|---------------------|---------------------|-----------------------|-----------------------|--------------------|-----------------------------|--------------------------------|------------|----------------|-------------------|--------------|-----------|----------------|----------|-------|---------|--------|-------------|-----------------------|-----------------------|-------------------|----------------|------------------|------------------|------------------|---------------------------------|-------------|---------------------|-------------------------|----------------|------------------------------|---------------|-----------|------------------|---------------|---|------------------------|--------|
| art/<br>und t  | ω                   | -1                  |                       | 1                     | 1                  | 1                           | 1                              | <br>       | •-•            | 12                | ς<br>Γ       | -1        | 1              | Ţ        | 1     | 1       | -<br>  | 7           | \$                    | <b>I</b>              | m                 | ŝ              | Ģ                | 2                | 1                | 1                               |             | 0                   |                         | -1             |                              | v- 1          | 4         |                  | 1             |   | 6114                   | 40     |
| Parts name     | Smoothing capacitor | Curreat transformer | f Currant transformer | Current Limiting RES. | Magnetic contactor | Main circuit te-minal block | Controd circuit terminel bjock | DC Reactor | Flywheel diods | Transistor močule | Dioda modula | Cipacitor | Surge absorber | Cover    | C349f | : Caver | Case . | Cooling fan | Thermal relay (100°C) | Thermal ralay ( 80°C) | Snubber capacitar | Shitbber diode | Snubber resistor | Snubber sagestor | Shubber resistor | Diode module for base drive PCB | transformer | Current transforce: | Printsd Joard (sontroll | Base drive PCB | Ealance resistor (Sama as 4) | Peststor ·    | Capasitor | Bigital operator | Charging land |   | HITACHI, LTd. 324 3781 | ••     |
| Short<br>titie | СB                  | 2CT                 | ני<br>ט               | R.S.                  | 84                 | ΤM                          | Ă                              | DCL        | FD             | РМ                | ХQ           | o         | SNR<br>2       | νO       | ΛO    | νc      | CS.    | FAN         | THR                   | THR                   | C1                | D 1            | ЧI               | сM               | RM               | DB                              | Ļ           | с<br>Т              | $\mathbf{O}$            | Ю<br>С<br>С    | RB                           | н<br>Б.<br>Б. | CD        | PANEL            | LED           | ļ |                        | -      |
| Parta<br>No.   |                     | 2                   | <b>m</b>              | 4                     | G                  | 8-I                         | 8-2                            | . 1 L      | 1 Z            | ĒŢ                | <br>117      | 15        | 1 <u>2</u> 1   | 19-1     | 19-2  | E-61    | 23     |             | 26-1                  |                       |                   | 32             |                  | 34               |                  | 36                              | 3.7         |                     | 61                      |                | 63                           | 64            |           |                  | 06            |   | L 20HF3                | ענאטונ |




Ψ.


æ

;

LPPD T. KAMBARA

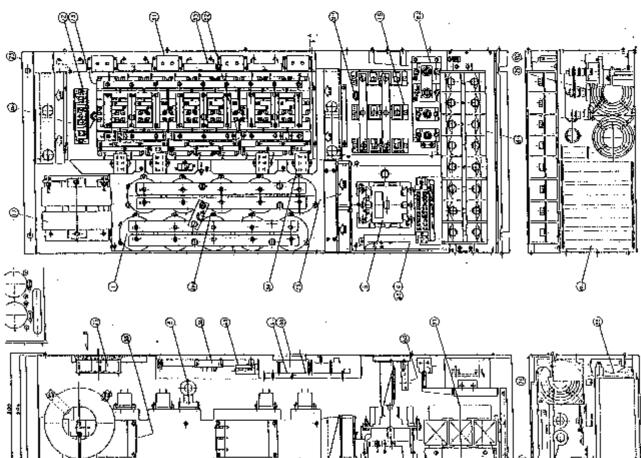
| *              |                     |   | 1                   |                     |                       |                    | A                           |                                |             |                |                   |                |             |                | ,     |         |       | _    |             |                       |                      |                   | A             |                  |                   |                  | 1                               |             |                     |                         | M              |                              |          |           | [                  |               |   |
|----------------|---------------------|---|---------------------|---------------------|-----------------------|--------------------|-----------------------------|--------------------------------|-------------|----------------|-------------------|----------------|-------------|----------------|-------|---------|-------|------|-------------|-----------------------|----------------------|-------------------|---------------|------------------|-------------------|------------------|---------------------------------|-------------|---------------------|-------------------------|----------------|------------------------------|----------|-----------|--------------------|---------------|---|
| 051/<br>1 1 1  | ω                   |   |                     |                     |                       | -                  | 1                           | 1                              | 1           | 1              | 12                | ריז.<br>י      | -           | 1              | -     |         | - 1   | - 1  |             | 2                     | 1                    | 4                 | 4             | αυ               | ~1                |                  | I                               | 1           | ∾1                  |                         | 1.             | -1                           | 1        | 1         |                    | 1             |   |
| Parts name     | Smoothing capacitor |   | Current transformer | Curreat transformer | Current Limiting RES. | Magnetic contactor | Main circuit terminal block | Control circuit terminal block | DC Resetor- | Piywheal dioda | Transistor nodule | é Diode module | i Cepecitor | Surge absorber | Caver | i Cover | Cover | Case | Couling fam | Thermal relay (:00°C) | Chermal relay (80.0) | Enubber copscito: | Souther digde | Shubber resistor | Souther capacitor | Saubber resistor | Bibde module for bese drive PCB | Trensforger | Current transformer | Printed board (controll | Base drive PCB | Balaccs resistor (Same as 4) | Resistor | Capacitor | : Jigital operator | Charging lamp |   |
| Sbort<br>title | СB                  | E | 201                 | ۳.<br>۵             | RS                    | 84                 | μŢ                          | ĨΜ                             | DOL         | FD             | ΡM                | DM             | D           | ZNP            | CΛ    | 27      | CΛ    | cs   | FAN         | THR                   | THR                  | CI                |               | R 1              | СM                | ЯM               | е<br>С                          | ÷           | СT                  | PCB                     | <b>PCB</b>     | н<br>с                       | ΙPΡ      | GD        | PANEL              | LED           | ĺ |
| Paris<br>No.   | -                   |   | 0                   | сл                  | 4                     | ç                  | 8-1                         | ?<br>80                        | 11          | 12             | 13                | 15             | 16.         | 17             | 19-1  | 1 9-2   | 19-1  | 23   | 25          | _                     |                      |                   | 32.1          |                  | 34                |                  | 36                              |             | ê0                  |                         | 62             |                              |          | 65        |                    | 00            |   |





i ...

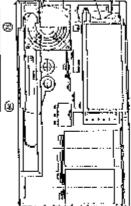
<u>, an</u>


╘╓╺╺┋ ŝ 3781611 NARABHING WORKS DVD. HO.

324

Hitachi, Ltd.

DERY M. ISOCAL 12 FREY 94 TUTLA OBDOLL CONSTANT VIEW 94 HFC-VWS 15 0 HF 3 APPD T. KAMBARA VIEW SLEWCLUER & FREY DD


| unjt           | 10                  | Ч                   | П                   | 1                     | Ч                  | Ч                           | Г                              | ŀ |            | -              | 00<br> -          | (n)          | <b>ب</b>                         | Ч                                       |       |       | _     | Ŀ    | 11          | 2   | -1                    | 7                | 4             | ω               | יר                | 0                | <b>с</b> 1                     | . 1         | ~                   | • 1:                    | • •            | <br>• L                      | , .,     |           |                  | _             |
|----------------|---------------------|---------------------|---------------------|-----------------------|--------------------|-----------------------------|--------------------------------|---|------------|----------------|-------------------|--------------|----------------------------------|-----------------------------------------|-------|-------|-------|------|-------------|-----|-----------------------|------------------|---------------|-----------------|-------------------|------------------|--------------------------------|-------------|---------------------|-------------------------|----------------|------------------------------|----------|-----------|------------------|---------------|
| Parts name     | Seconhing capacitor | Current transformer | Currant transformer | Current limiting 885. | Magnesic contactor | Main circuit terminal block | Control circuit terminal block |   | DC Reactor | Plywheel diode | Trensistor module | Dinde module | Capicits: (not signa in draving) | " Surge absorbor (not saves in creviep) | Cover | Cover | Caver | Case | Copling fan |     | Thermal relay : 82°Cl | Subber cepecitor | Stubber dicde | Subbar resistor | Shubber sapecilor | Saubter resistor | E ede module or base drive PCS | 7-instormer | Current trensformer | 2-inted board (controll | Basa drive PCB | Bajance resistor (Same as 4) | Resistor | Gapaciter | Digital operator | Charging Lamo |
| saori<br>title | CB                  | ZCT                 | 0T                  | RS                    | 84                 | ТM                          | ΤM                             |   | DCL        | ΞD             | РM                | DΝ           | υ                                | ZNR                                     | 20    | 20    |       | SC   | PAN         | тнз | H                     | C 1              | D1.           | <u>R 1</u>      | CN:               | RM               | DВ                             | Г           | ст                  | PCE                     | PCB            | ЯB                           |          | GD        | PANEL            | 03            |
| Nq.            | -                   | 2                   | e                   | 4                     | G                  | 8-1                         | 8-2                            |   | 1:         | 12             | 13                | 15           | 16                               | 17                                      | 1-8 I | -<br> | Ó     |      | 25          |     | 26-2                  |                  |               | 33              | 4                 |                  | 35_                            |             | 60                  |                         | 62             |                              |          | 55        | 56               | 06            |



Т

n

et n



**e**1

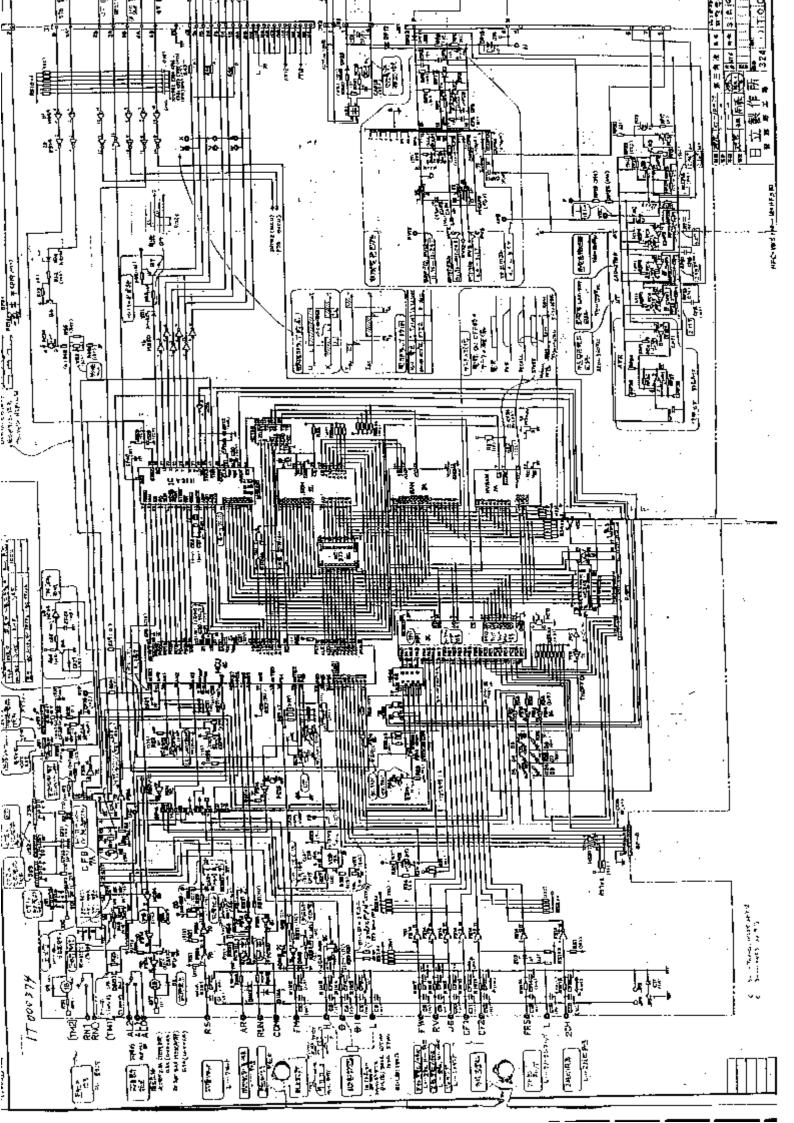
6

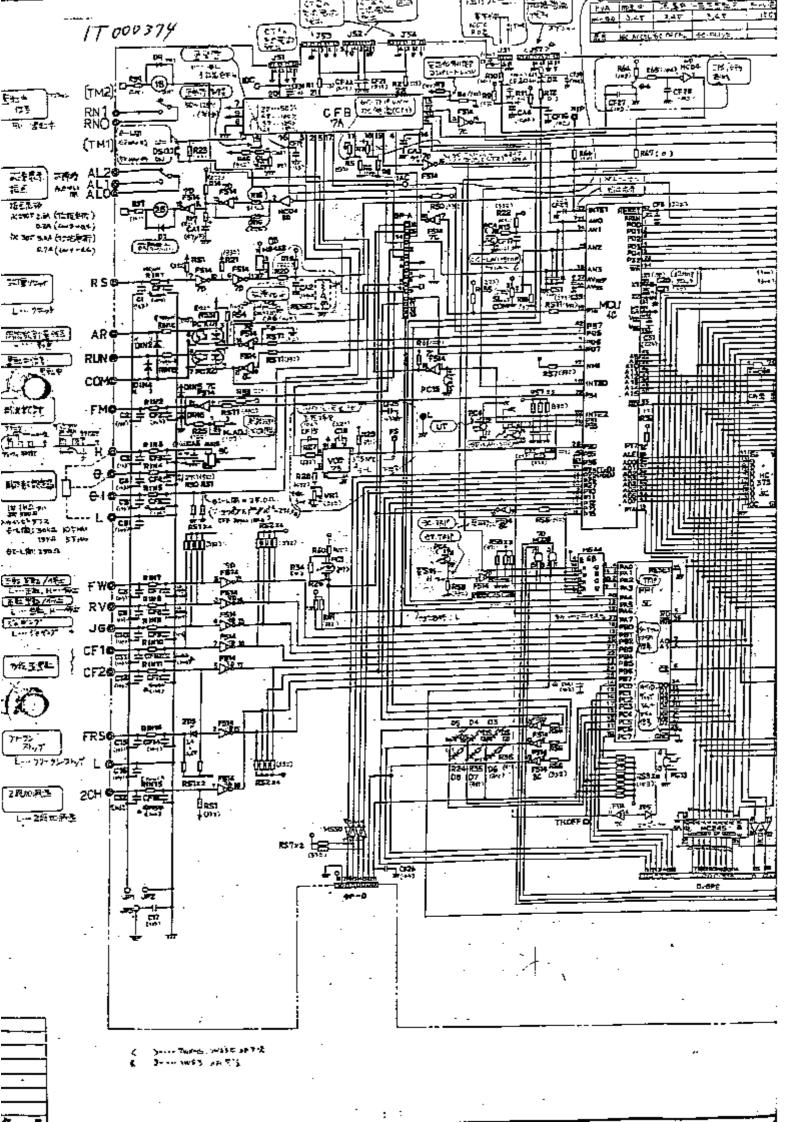
11

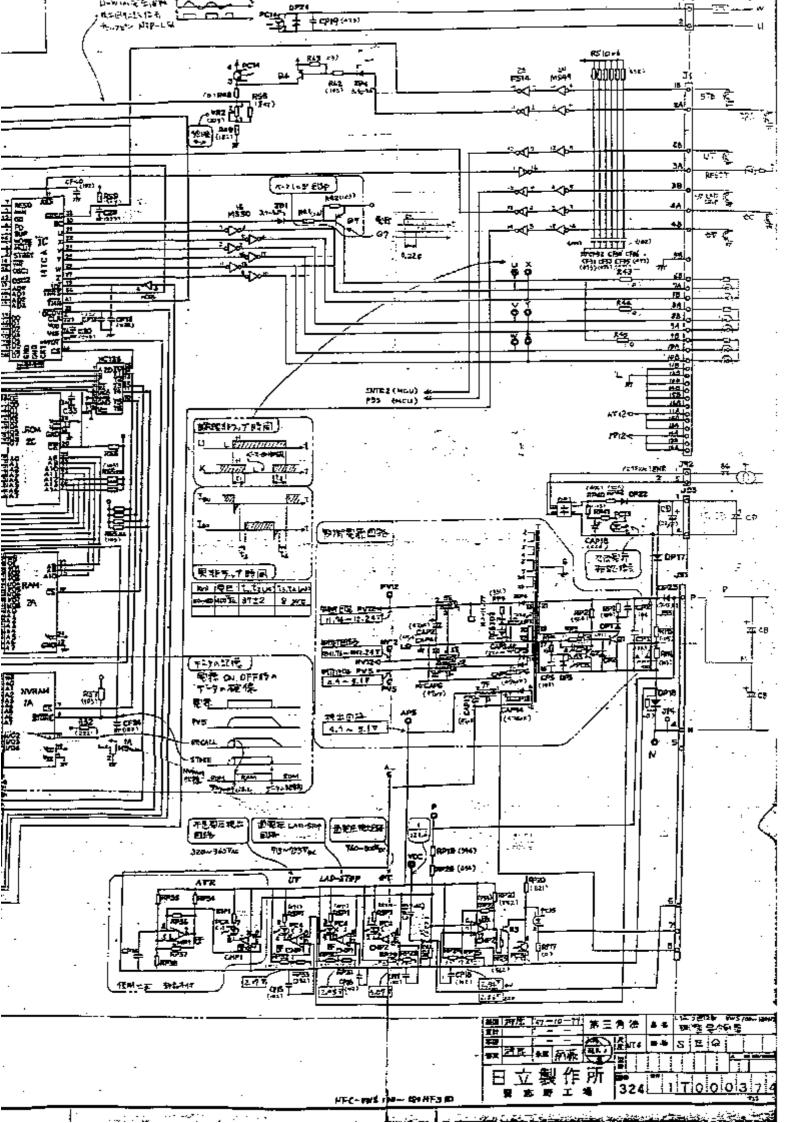
37816479

324

Hitachi, Ltd:


APPO X 1503A1 II Nerring TIPC-VWS180HF3


Ξ


03

**b**.

KARABACHO TOZKE DWI. HO.







END OF PAGE