HITACHI Inspire the Next

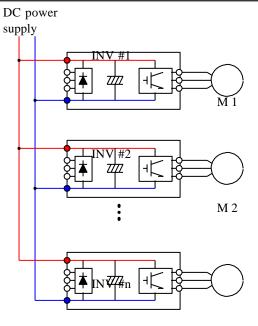
Application Note: Powering Inverters from a DC Supply

Please refer also to the Inverter Instruction Manual

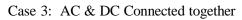
AN091802-1 Rev B

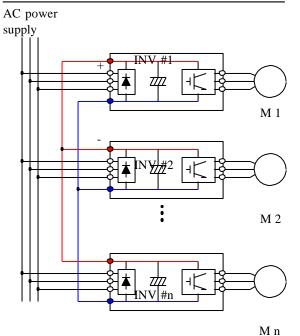
Hitachi Industrial Equipment & Solutions America, LLC

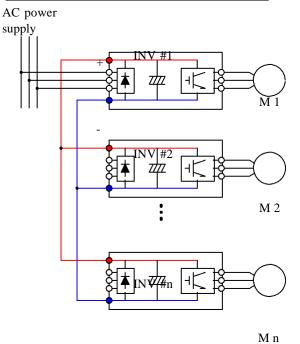
© Hitachi Industrial Equipment & Solutions America, LLC. 2021.

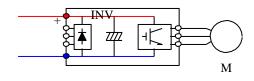

Powering Inverters from DC

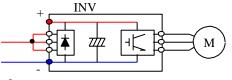
It is possible to power inverters from a DC Power source, or to connect the DC Bus of multiple inverters together to achieve energy savings, since inverters in power driving mode can use power from those that are in regeneration mode.


[1] Connection method


There are several ways for DC bus connection of the inverters. (Examples of 3-phase 200V or 400V class inverter.)


Case 1: Connected in parallel to a common DC bus



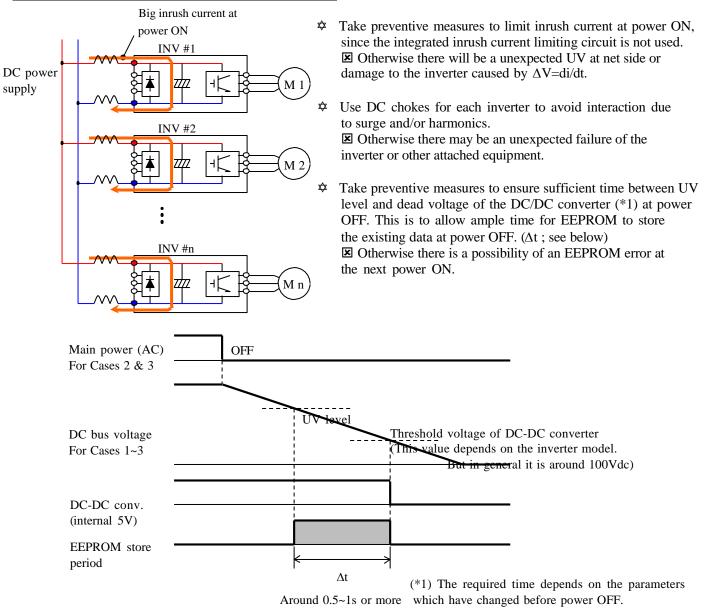


Case 4: DC supply connection methods

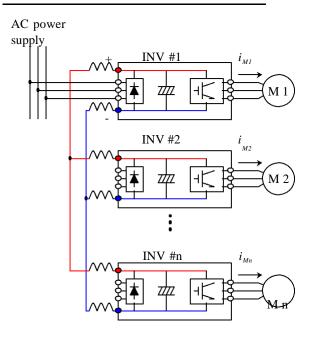
 \Box Connecting to + and - terminal

Connecting to AC inputs and - terminal

☆ Advantage and disadvantages of Case 4 connection method.

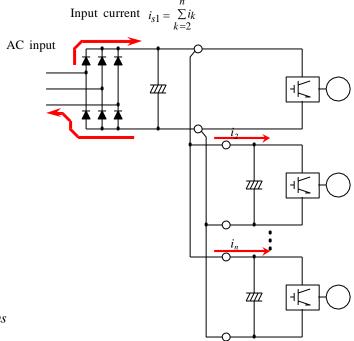

Item	Contents		Advantage		Disadvantage			
	Connecting to + & - terminal	0	No concern for the rectifier bridge diodes.		There will be no inrush current limiting.			
Ą	Connecting to AC inputs and - terminal	0	Integrated inrush current limiting circuit is used.	8	Rectifier bridge diodes of the main inverter may need to be up-sized.			
Page 2 of 4								

[2] DC voltage to be supplied


Model	Class	UV	BRD On	OV (regen)	OV source
NES1	200V	UV:175+-10VDC UV	ADJUSTABLE BY b096	400+-10VDC	390+-10VDC
INEST		RETRY: 195+-10VDC	330-380VDC	400+-1070C	HOLDS 100S
	400V	UV:345+-10VDC UV	ADJUSTABLE BY b096	800+-20VDC	780+-20VDC
	400 v	RETRY: 390+-20VDC	660-760VDC	800+-20VDC	HOLDS 100S
WJ200	200V	UV:172.5+-10VDC	ADJUSTABLE BY b096	400+-10VDC	390+-10VDC
VVJ200		UV RETRY: 195+-10VDC	330-380VDC	400+-1070C	HOLDS 100S
	400V	UV:345+-10VDC UV	ADJUSTABLE BY b096	800+-20VDC	780+-20VDC
	400 v	RETRY: 390+-20VDC	660-760VDC	800+-20VDC	HOLDS 100S
S1700(D)	200V	UV:175+-10VDC UV	ADJUSTABLE BY b096	400+-10VDC	390+-10VDC
SJ700(D)		RETRY: 195+-10VDC	330-380VDC	400+-10VDC	HOLDS 100S
	400V	UV:345+-10VDC UV	ADJUSTABLE BY b096	800+-20VDC	780+-20VDC
	400 V	RETRY: 390+-20VDC	660-760VDC		HOLDS 100S
SJ-P1	200V	UV:175+-10VDC UV	ADJUSTABLE BY b096	400+-10VDC	390+-10VDC
		RETRY: 195+-10VDC	330-380VDC	400+-1000C	HOLDS 100S
	400V	UV:345+-10VDC UV	ADJUSTABLE BY b096	800+-20VDC	780+-20VDC
	4000	RETRY: 390+-20VDC	660-760VDC		HOLDS 100S

[3] Cautions

Case 1 : Connected parallel to a common DC net



Case 2 : DC Bus connected n parallel to a single AC-fed inverter

- ☆ Pay attention to the selection of the main inverter (#1) because all the input current flows through the rectifier bridge of this inverter. (*2)
- ☆ Need sufficient time for EEPROM to store the data. (Refer to Case 1)
- ✿ Use DC choke. (Refer to Case 1)

<Selection of the main inverter kW>

(*2) Capacity of the main inverter

- Rated current of the main inverter should be higher than;
 - ✤ Total rated current of the inverters
 - and
 - ✤ Possible highest total motor current

[Example of 4 inverters in parallel]

- ✿ INV#1~#4=SJ700-040HFxF2 (9.0 A rated)
- $\Rightarrow i_{M1(max)} = i_{M2(max)} = i_{M3(max)} = i_{M4(max)} = 9.5 \text{ Arms}$

In this case, the total motor current <u>under the possible worst case is higher than that of the inverters</u>.

Total inverter rated current $= \dot{i}_1 + \dot{i}_2 + \dot{i}_3 + \dot{i}_4 = 9.0 * 4$ = 36 ArmsTotal motor current under possible worst case $= \dot{i}_{M1(max)} + \dot{i}_{M2(max)} + \dot{i}_{M4(max)} = 38$ Arms

☑ Main inverter must therefore be P1-00470-HFUF (38A) or larger. P1-00620-HFUF is suggested to provide additional safety margin.

Hitachi Industrial Equipment & Solutions America, LLC

© Hitachi Industrial Equipment & Solutions America, LLC. 2021.