HITACHI INVERTER

REMOTE OPERATOR SRW-0J, SRW-0EX

INSTRUCTION

MANUAL

Thank you for purchasing Remote Operator. This instruction manual is written about how to use Remote Operator. Could you use this manual for inspection, maintenance, setting and use it with the main body of inverter. After reading this manual, keep it at hand for future reference.

SAFETY

To get best performance with Remote Operator, read this manual and all of the warning sign attached to the inverter carefully before installation and operation, and follow the instructions exactly. Keep this manual handy for your quick reference.

Definitions and Symbols

A safety instruction (message) is given with a hazard alert symbol and a signal word;
WARNING or CAUTION. Each signal word has the following meaning throughout this manual.

This symbol means hazardous high voltage. It used to call your attention to items or operations that could be dangerous to your and/or other persons operating this equipment.
Read these messages and follow these instructions carefully.
This is the "Safety Alert Symbol. " This symbol is used to call your attention to items or operations that could be dangerous to your and/or other persons operating this equipment. Read the messages and follow these instructions carefully.

WARNING

Indicates a potentially hazardous situation which, if not avoided, can result in serious injury or death.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, can result in minor to moderate injury, or serious damage of product.
The matters described under \triangle CAUTION may, if not avoided, lead to serious results depending on the situation. Important matters are described in CAUTION (as well as WARNING), so be sure to observe them.

NOTE
Notes indicate an area or subject of special merit, emphasizing either the product's capabilities or common errors in operation or maintenance.

HAZARDOUS HIGH VOLTAGE

Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there might be exposed components with cases or protrusions at or above line potential. Extreme care should be taken to product against shock. Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power before checking controllers or performing maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electronic controllers or rotating electrical equipment.

Revision History Table

No.	Revision Contents	The Date of Issue	Operation Manual No.
1	Initial Release of Manual NB615X	Apr. 2000	NB615X

\triangle WARNING

Never modify the unit.
Otherwise, there is a danger of electric shock and/or injury.

\triangle CAUTION

Avoid locations of high temperatures, high humidity, dew condensation, dust, corrosive gases, explosive gases, combustible gases, coolant mist and sea damage etc. Install indoors, to avoid direct sunlight and the unit should be well ventilated.

Otherwise, there is a danger of electric shock and/or injury.

TABLE OF CONTENTS

Chapter 1 Introduction 1
Chapter 2 Notes of handling 3
Chapter 3 Connection, wiring, and attaching 4
Chapter 4 Name of parts and contents 5
Chapter 5 Copy function and operation 6
Chapter 6 Setting operating mode 8
Chapter 7 Error message 9
Chapter 8 Trouble shooting 10
Chapter 9 Specification 11
Chapter 10 LCD display and operating
for SJ300/L300P series 12
Chapter 11 Operating for the past type (ex.J300 series) 61

1.1 Outline

This operator is series of SJ300/L300P and it has a 16 characters $x 2$ lines liquid crystal display. This operator enable monitor data setting, data read setting copy also it can use former operator if which can use DOP/DRW. (but function is restricted.)

1.2 Applicable Inverter Models

UNIT	DISPLAY	Attach to the inverter	Remark
SJ300,L300P series	16characters $\times 2$ lines	Possible	
SJ100,L100,J300,L300	16characters $\times 2$ lines	Impossible	Left side moving function key and remote function key are invalid
J100,J200,JH300,J500	(Display to the top row)		
L50 series			

This operator can use the inverter if which can use DOP/DRW.

《NOTE》
It is necessary to change the operation mode of remote operator, when the Inverter type is not SJ300/L300P series. Because initial value of the operation mode is the value for SJ300/L300P.(Refer to 6 chapter)

1.3 Inspection upon unpacking

Please don't shake the product when you open the package. Make sure that the product is the one you orderd and there was no damage (injury,falling or dents in the body) during transpotation of the unit.
Content of package

1. Main body of remote operator :1
2. Instruction manual :1

If you have any questions please contact your supplier or the local Hitachi Distributor with the following information.

1.4 Question and Warranty of the unit

1.4.1 Request upon asking

- If you have any questions regarding damage to the unit, unknown parts or for general enquiries, please contact your supplier or the local Hitachi Distributor with following information.
(1) Model
(2) Product Model Code
(3) Date of purchase
(4) Reason for calling
- Damaged part and its condition etc.
- Unknown parts and their contents etc.
- For reducing down time, we recommend keeping a spare unit.

1.4.2 Warranty for the unit

The warranty period of the unit is one year after the purchase date. However within the warranty period, the warranty will be void if the fault is due to;
(1) Incorrect use as directed in this manual, or attempted repair by unauthorized personnel.
(2) Any damage sustained other than from transportation (which should be reported immediately).
(3) Using the unit beyond the limits of the specification.
(4) Act of God (Natural Disasters: Earthquakes, Lightning, etc)

- The warranty is for remote operator only, any damage caused to third party equipment by malfunction of the remote operator is not covered by the warranty.

Repairing for payment

Any examination or repair after the warranty period (one-year) is not covered. And within the warranty period any repair and examination which results in information showing the fault was caused by any of the items mentioned above, the repair and examination cost are not covered. If you have any questions regarding the warranty please contact either your supplier or the local Hitachi Distributor.

2.1 Handling the Cable (Optional)

1. Avoid pulling the cable forcibly for operation or moving the operator by its cable.
2. Fix the cable when the operator is housed in the object inverter panel.
3. Separate the cable more than 15 cm from the main circuit, the main circuit relay, and the circuit control cable.
4. The allowable connection/disconnection frequency of the cable is about 1000 times. If errors or unreadable characters are often contained in displayed data, replace the cable. (If the same error symptom appears even after the cable replacement, replace the remote operator itself.)
5. Be sure to turn OFF the power supply of the inverter and confirm the POWER lamp is OFF before connecting /disconnecting the operator cable.

2.2 Providing an EMERGENCY Switch

The operator may not stop in some cases when the stop key is pressed if an abnormal event such as contact error, cable break, etc. occurs in the operator itself, its cable or connect during operation.
To prevent such a trouble or unexpected accidents, it is recommended to provide an EMERGENCY STOP switch to the inverter terminal RS or FRS.

2.3 Operating Life of Memory Elements of the Remote Operator unit

The memory elements of remote operator unit are limited in operating life about 100,000 times of data writing frequency. When the operating life is reached "R-ERROR DATA ROM" will appear and the read, and the copy functions will be disabled. But monitor and data setting are able to use.

3.1 Connect to inverter

3.1.1 Connecting to operator on the surface of cover (SJ300/L300P series only)

1. After setting up like a following figure, insert the operator to the connector vertically.
2. Turn on the power supply of the inverter, and Confirm that LCD screen of the operator is ON.

3.1.2 Connecting by cable (Option)

1. Insert the both end of cable to main body and operator.
2. Turn on the power supply of the inverter, and Confirm that LCD screen of the operator is ON.

UNIT	Cable
SJ300,L300P,SJ100,L100 series	ICS-1, ICS-3
J300.L300,J100,J200JH300,J500,L50 series	ICS-1J ,ICS-3J

SRW-0EX

Name	Contents
LCD monitor	Display of frequency, output current and set value, etc . (NOTE 1)
RUN lamp	Light on when the inverter is running. (NOTE 2)
PROGRAM lamp	Light on when displaying set value of each function in monitor section. Light will go on and off as a warning (when set value is incorrect). (NOTE 2)
POWER lamp	Power lamp of control circuit.
ALARM lamp	Light on when the Inverter trips. ${ }^{\text {a }}$ (NOTE 2)
OPERATION COMMAND DISPLAY Iamp	Light on only when operating command (RUN/STOP) is set in operator. (NOTE 2)
REMOTE key	Remote key can change operation command and frequency command method to the operator. (NOTE 2) (NOTE 3)
READ key	The key is used for storing the data of the inverter to the memory elements of inside the remote operator.
COPY key	The key to copy the data set which data is memorized in remote operator.
MONITOR key	The key is used to enter monitor mode or trip monitor mode.
FUNCTION key	The key containing basic setting mode, extension functions mode.
STORE key	The key to store the data set. (On changing set value, must be pushed or value is lost.).
CURSOR key	The key is used to move right and left. (NOTE 4)
UP,DOWN key	The keys to change extension function mode, function mode and set value.
FORWARD,REVERSE RUN key	The key is used for operating motor but this key can command only operator. (Check operation command display lamp, whether it flash or nor.).
STOP/RESET key	The key is used to stop the motor, or reset an alarm.

(NOTE 1) 2-LineDisplay for SJ300/L300P series only
(NOTE 2) SJ300/L300P series only
(NOTE 3) Press the key more than 3 seconds, and can change while the inverter stops .
(NOTE 4) The LEFT CURSOR key is valid for SJ300/L300P series only .

5.1 Copy Function

1. The copy function can be used only while the inverter stops. While the inverter is running, tripping, reset or soft-locked, the function is invalidated.
2. Press the Read key or copy key. The following display will appear corresponding to the entered key. When the copying ends, the display will go back to the before one.

3. If any set data is updated after some data is read the inverter, the data is updated only in the inverter. To read the updated data from the inverter into a remote operator, press the Read key again.
4. The data read into a remote operator can be held even when the power supply of the inverter is turned OFF.
5. Copying data between inverters is possible only between the same type ones. (When copying is done between different type inverters, will display error message and copy function will stop.)
6. In order to protect the data in the remote operator, a function to inhibit transferring data from inverter to remote operator and reading data from inverter is provided. To use this function read 5.2 please.
7. Refer to the each inverter instruction manual about the object item of READ /COPY .
8. When pressing any key or resetting the unit or the power is turned off after the READ key /COPY key is pressed, be sure to wait for at least ten seconds.

5.2 Read Lock Operation

More than 2 second, press the MON - (I) - STOPIRESET keys at the same time on general operation.

"READ" function is invalidity

If you press the STR key, data wil be stored.
If you press the REMT key, back to the general mode.
Both of the keys are used for changing the top and bottom row.

When read lock of remote operator follow as below.
(NOTE)Setting item for Multi language select. The item is displayed, when "OPERATOR TYPE" is "SRW" or "LANGUAGE SELECT" is "ON" in Setting operation mode . (refer to chapter 6)

To change operating mode of the remote operator is written below. The setting data are validity after Power ON again .

Inverter Type	BPS	OPERATOR TYPE	remarks

LOCAL MODE
During press the REMT - FUN key.,
"LOCAL MODE " will appear

Error messages to be displayed on the screen are classified into inverter errors and operator errors. They will appear on the screen as shown below.

7.1 Inverter error message

or
?ERROR $* * * * * * * *$

7.2 Operator error messages

$$	Cause	Check item	Action	$\begin{gathered} \text { Reset- } \\ \text { ting } \\ \text { Method } \end{gathered}$
COMM.<1>	Quantity of the data within time unit didn't match.	- Check noise sources around there. - Check the cable for disconnection.	- Separate the cable from others to eliminate the noise. - Check the cable	Press STOP/ RESET Key
COMM.<2>	No signal is received from the inverter within 5 sec.	- Reset the inverter. - Check the connector for looseness /disconnection. - Check the cable for break	- Avoid issuing the RESET signal continuously for more than 5 sec. (NOTE 1) - Replace the cable and the connector.	
INV .RUN	- The COPY key is pressed while the inverter is running. - Soft-lock is turned ON.	- Check if the COPY key is pressed while the inverter is running. - Check if the COPY key is pressed while Soft-Lock is ON	- The COPY key Should be pressed only while the inverter stops. - Release the Soft-Lock (of the inverter).	
INV. TRIP	COPY key is pressed while the inverter trips.	Check if the inverter trips.	Reset the inverter from the trip status.	
INV. TYPE	An attempt was made to copy between different type inverters		Copying is possible only between same type inverters.	
RD LOCK	In case of display "READ LOCK".		Release the Read Lock.	
DATA ROM	EEPROM of remote operator is overloaded		- If the same error recurs after the power is supplied once or twice, - Purchase the new operator please.	Supply the power again.

		Chapter 7 Error message	
COPY ROM	The data written in the inverter unmatches with the data in the remote operator.	If the same error recurs when copying is done again, the inverter is defective.(NOTE 2)	

(NOTE 1) Except SJ300/L300P/SJ100/L100 series.
(NOTE 2) Refer to the each inverter instruction manual.

For the troubleshooting of the inverter, refer to the inverter instruction manual. In this section, the troubleshooting of the operator will be described.

1. No data appears on the screen.

2. Key operations are ignored.

3. If the operator/inverter screen becomes dark or characters cannot be identified, inductive noise may be entered from the cable. Separate the remote operator cable more than 15 cm from other cables. To reset the disturbed screen, turn ON any keys of remote operator. If the same symptom appears again, turn OFF the inverter power supply or reset the terminal reset signal.

10.1 Type of LCD screen, configuration LCD

LCD screens are classified five types. Each of mode's operation way is written on 10.3

1. Monitor mode A (display monitor screen display in top row and function mode simple display in bottom row.)

Monitor Item 1 Function Mode Simple Display	Ex. : \quadFM $>$ A001	0060.00 H

2. Monitor mode B (display the monitor screen display on top row and bottom row.)

Monitor Item 2 Monitor Item 3	Ex. :	FM 0060.00 H lout 0022.5 A

3. Trip mode (display each data during trip)

ERR1	Factor				
The data on trip	Inverter status	\quad	ERR1 $:$	OC.	Accel
:---	:---	---:			
F	037.00 Hz	ACC			

4. Warning monitor (display each data during warnig)

WARN Factor code Contents of warning	Ex. :	WARN Lim-L	> FS	W025

5. Function mode (selecting function)

$>$ Code No. Individual	Name of group setting value	Ex. :	$\begin{aligned} & \hline>A 001 \\ & \text { SELECT } \end{aligned}$	$\begin{gathered} \hline \text { F-SET } \\ \text { REM } \end{gathered}$

10.2 The way of changing mode

Each of the way of changing is written following figure.

10.3 Method of each of modes operation

(1) Monitor Mode A

 setting item in bottom row, then press the store key.

- Example 1

In case of method of select the output current in monitor item 1 and select A001 to the simple display item of function mode, and frequency command change from remote operator to terminal.

Monitor Mode A
FM
$>$ F001
0000.00 Hz

$\sqrt{ }$ Press the key several times, then select "lout"(Output current monitor),

lout	0000.0 A
$>$ F001	0010.00 Hz

$\sqrt{ }$ Press the key, then move the cursor down.

lout	0000.0 A
$>\mathrm{F} 001$	0010.00 Hz

Press the 2 key several times, then select "A001"(Method of frequency
command selection).

lout	$0000.0 A$
$>A 001$	REM

Press the key 5 times, then move the cursor to the data area in bottom row.

lout	0000.0A
$>$ A001	REM

$\sqrt{ }$ Press the key 1 time, then select "TRM"(Terminal).

lout	0000.0A
$>$ A001	TRM

\square Press the STR key, then decide the monitor item for storing the data value.

lout	$0000.0 A$
$>$ A001	TRM

While simple display item of function is updated. You can display updated item by changing code number.

- Example 2

When changing from A001 to C021.

Monitor Mode A	
lout 000.0 A $>$ A001 REM	

$\sqrt{\square}$ Press the $\$$ key, then move the cursor to the bottom row.

lout	0000.0A
$>$ A001	REM

$\sqrt{5}$ Press the $\sqrt{\text { key }}$, then move the cursor to the code number display "A".

lout	0000.0A
$>$ A001	REM

$\sqrt{\square}$ Press the key 2 times to select "C" (display C001).

lout	0000.0 A
$>\mathrm{C} 001$	RS

lout	0000.0 A
$>\mathrm{C} 001$	RS

key 2 times to select "2".
(Automatically, C021 is selected, then data of C021 will be displayed.)

lout	0000.0A
$>$ C021	FA1

$\sqrt{\square}$ Press the STR key, then move the cursor to the head of top row.

lout	0000.0A
$>$ C021	FA1

(2) Monitor Mode B

Use (1) key and 2 key select the monitor item which you desired, press the store key.

- Example

In case of selecting output current monitor in monitor item 2 and electric power monitor in monitor item 3.

Monitor Mode B	
FM 0000.00 Hz lout 0000.0 A	

$\sqrt{ }$ Press the 2 key several times, then select

lout	0000.0A
lout	0000.0 A

$\sqrt{\square}$ Press the $\$$ key, then move the cursor down.

lout	0000.0 A
lout	0000.0 A

$\sqrt{\text { Press the }}$ "Power".

lout	0000.0 A
Power	000.0 kW

$\sqrt{5}$ Press the STR key, then decide monitor item.

lout	0000.0 A
Power	000.0 kW

(3) Trip Monitor

How to display each of trip data is following explanation.

- Example

In case of display last time (ERR2) trip contents.

$c \mid$
Trip Monitor
ERR1
F 0037.00 Hz Accel

$\sqrt{5}$ Press the key to select "ERR2".

Over.V	In the display example, Factor is Over.V(Over voltage trip), frequency is
5.30 Hz DEC	

$\sqrt{\square}$ Press the key, then move the cursor to the bottom row.

ERR2	Over.V
F 0035.30 Hz	DEC

$\sqrt{5}$ Press the key to display output current on tripping.

| ERR2 Over.V In the display example, output current is 22.5 A on |
| :--- | :--- | lout 0022.5A DEC tripping.

$\sqrt{5}$ Press the key to display PN voltage on tripping.

ERR2	Over.V	display example, PN voltage is 395 V on tripping.
Vpn	\bigcirc DEC	

$\sqrt{\text { Press the }}$ counted from when inverter is operating.

ERR2	Over.V	In the display example, accumulated time on tripping during run is 10 hours while inverter is turned on.
RUN 000010 hr DEC		

Press the key to display accumulated time on tripping of ON time
which time is counted from when inverter is turned on.

In the display example, accumulated time on tripping of ON time is 12 hours which time is counted from when inverter is turned on.

Trip history trip data of ERR2 in the display examples are arranged following list.

Item	Data value
Factor of tripping	Over .V (Overload voltage trip)
Inverter status on tripping	DEC (During deceleration)
Output frequency on tripping	35.30 Hz
Output current on tripping	22.5 A
PN voltage on tripping	395.0 V
Accumulated time on tripping during run.	10 hr
Power ON time on tripping.	12 hr

(4) Function mode

In function mode, there are three ways of display item.

1. Method of changing the code following display direction.

Function mode

$>$ F001	SET-Freq.
FS	0000.00 Hz

$\sqrt{5}$ Press the key to select "A002".

$>$ A002	F/R
SELECT	REM

$>A 002$	F/R
SELECT	REM

$\sqrt{4}$ Press the keys to select "TRM"(Terminal).

$>A 002$	F/R
SELECT	TRM

$\sqrt{\text { Press the STR key for keeping the updated data }}$ to the EEPROM, then move the cursor to the

$>A 002$	F/R
SELECT	TRM

- Example Display A002(Operation setting selection)then change from remote to terminal

2. Method of transferring to other function.

- Example

Display A002(Operation setting selection), then change from remote to terminal.
Function mode

$>$ F001	SET-Freq.
FS	0000.00 Hz

$\sqrt{5}$ Press the $\$$ key, then move the cursor to the display code number "F".

$>$ F001	SET-Freq.
FS	0000.00 Hz

$\sqrt{3}$ Press the key, then change the display code number "F" to "A".

$>A 001$	F-SET
SELECT	REM

$\sqrt{5}$ Press the 1 key 3 times, then move the cursor to first figure of display code number.

$>$ A001	F-SET
SELECT	REM

$\sqrt{\text { Press the }}$ key, then set "2" on first figure of display code number.

$>A 002$	F/R
SELECT	REM

$\sqrt{5}$ Press the 1 key 3 times, then move the cursor to the data area.

$>$ A002	F/R
SELECT	REM

$\sqrt{5}$ Press the key to select "TRM(Terminal)".

$>$ A002	F/R
SELECT	TRM

$\sqrt{\square}$ Press the str key to store the updated data to EEPROM.
Move the cursor at the head of top row.

$>$ A002	F/R
SELECT	TRM

3. How to select name of group and individual name on display.

- Example

In case of changing from 0% to 10%, in display A054(DC braking power on stop).
Function mode

$>$ FO01	SET-Freq.
FS	0000.00 Hz

$\sqrt{\square}$ Press the 1 key 5 times to move the cursor to the group display section.

PF001	SET-Freq.
FS	0000.00 Hz

$\sqrt{2}$ Press the key several times to change group display from "SET-Freq." to DCB(Direct current braking).

$>$ A051	DCB
Mode	OFF

$\sqrt{\square}$ Press the key to move the cursor to the individual name section.

$>$ A051	DCB
Mode	OFF

$\sqrt{2}$ Press the key several times to change individual name display from "Mode" to "STR-V(Direct braking power on stop)".

$>$ A054	DCB
STP-V	000%

$\sqrt{\square}$ Press the key to move the cursor to second figure of data area.

PA054	DCB
STP-V	000%

$\sqrt{5}$ Press the key to change the data from 000% to 010%.

$>$ A054	DCB
STP-V	010%

PA054	DCB Press Move STP-V

(5) User display

User-display-mode display the item to be selected by U001~U012.

Press the MON - FUN keys more than 2 seconds and press them at the same time on

User display of monitor mode is monitor mode B.

The item is selected by U001 to U012.
If you press the MON key, then it will move to the monitor mode.
If you press the FUN it will move to the function mode.

10.4 Display list

(1) Monitor Mode

No.	Function name	Display contents		Monitor range	Remark
1	Setting frequency monitor	FS	0000.00Hz	0.00-400.00 (Hz)	Multi-speed 0 (First setting)
		2FS	0000.00Hz	Display is changed, depend on Frequency type which is set presently.	Multi-speed 0 (second setting)
		3FS	0000.00Hz		Multi-speed 0 (Third setting) (NOTE 2)
			0000.00 Hz		Analog input
			000.00 Hz		Jogging mode

Chapter 10 LCD display and operating for SJ300/L300P series

			1S	0000.00Hz		Multi-speed 1
				\|		\|
			5 S	0000.00 Hz		Multi-speed 15
			OP1	0000.00 Hz		Frequency from option 1
			P2	0000.00 Hz		Frequency from option 2
			RS485	0000.00Hz		Frequency from RS485
2	Output frequency monitor		M	0000.00 Hz	0.00-400.00 (Hz)	
3	Output current monitor		out	0000.0A	0.0-999.9 (A)	
4	Operation direction monitor		ir	FWD	FWD / STOP / REV	
5	PID feedback monitor		PID-FB	0000.00\%	0.00-99900	
6	Intelligent input terminal monitor		N-TM	LLLLLLLLL	"L":terminal OFF, "H":terminal ON status	L300P series: IN-TM L___LLLLL
7	Intelligent output terminal monitor		UT-TM	LLLLLL	"L":signal OFF, " H ":signal ON status	OUT-TM L___LL
8	Frequency conversion monitor		-CNV	000000.00	0.00-39960.00	
9	torque monitor		RQ	+000\%	-300. - +300 \%	(NOTE 2)
10	Output voltage monitor		Vout	000.0V	0.0-600.0 V	
11	Input electric power monitor		Power	000.0kW	0.0-0999.9 kW	
12	Accumulated time monitor during RUN		RUN	0000000hr	0. - 999999 hr	
13	Power ON time monitor		N	0000000hr	0. - 999999 hr	
14	Number of trip time monitor		RR COU	UNT 00000	0. -65535 times	

(NOTE 1) Do not forget to press "STR" key when you change the display.
(NOTE 2) SJ300 series only .

(2) Trip monitor mode

No.	Function name	Display contents (Example)	Remark
1-(1)	Trip monitor 1 (Frequency) (output current)	ERR1 OC.Accel F 0035.23 Hz ACC	The latest trip contents . (When acceleration time of over current.)
(2)		ERR1 OC.Accel lout 0022.2 A ACC	
(3)	(Direct voltage)	$\begin{aligned} & \text { ERR1 OC.Accel } \\ & \text { Vpn } 296.6 \mathrm{~V} \text { ACC } \end{aligned}$	
(4)	(Accumulated time during RUN)	ERR1 OC.Accel RUN 000011hr ACC	
(5)	(Power on time)	ERR1 OC.Accel ON 000023hr ACC	
2-(1)	Trip monitor 2 ((Frequency)	$\begin{aligned} & \text { ERR2 EXTERNAL } \\ & \mathrm{F} \quad 0030.00 \mathrm{~Hz} \mathrm{CST} \\ & \hline \end{aligned}$	The last time trip contents. (In case of external trip.)
(2)	(Output current)	ERR2 EXTERNAL lout $0010.2 A$ CST	
(3)	(Direct voltage)	$\begin{aligned} & \text { ERR2 EXTERNAL } \\ & \text { Vpn } 280.3 \mathrm{~V} \mathrm{CST} \end{aligned}$	
(4)	(Accumulated time during RUN)	ERR2 EXTERNAL RUN 000010hr CST	
(5)	(Power on time)	ERR2 EXTERNAL ON 000021hr CST	
3-(1)	Trip monitor 3 (Frequency)	ERR3 Over.V F 0037.56 Hz DEC	Trip contents 2 times before (In case of over voltage trip)
(2)	(Output current)	ERR3 Over.V lout 0018.1 A DEC	
(3)	(Direct voltage)	$\begin{array}{lr} \text { ERR3 } & \text { Over.V } \\ \text { Vpn } & 396.5 \mathrm{~V} \text { DEC } \\ \hline \end{array}$	
(4)	(Accumulated time during RUN)	ERR3 Over.V RUN 000009hr DEC	
(5)	(Power on time)	ERR3 Over.V ON 000019hr DEC	
4	Trip monitor 4	$\begin{array}{ll} \hline \text { ERR4 } \\ ? ~ ? ~ ? ~ \\ ? \end{array}$	Trip contents 3 times before (In case of no occurrence.)
5	Trip monitor 5	$\begin{array}{ll} \hline \text { ERR5 } & ? \\ ? ~ ? ~ ? ~ \end{array}$	Trip contents 4 times before. (In case of no occurrence.)
6	Trip monitor 6	$\begin{array}{lll} \hline \text { ERR6 } & ? \\ ? ~ ? ~ ? ~ \end{array}$	Trip contents 5 times before. (In case of no occurrence.)
7	Warning monitor	$\begin{gathered} \text { WARN W025 } \\ \text { Lim-L }>\text { FS } \end{gathered}$	Warning contents (Lim-L > FS)
	Warning monitor	$\begin{gathered} \text { WARN ? } \\ ? \end{gathered}$	Warning contents (Non occur)

(3) Function mode (F mode)

No.	Function name	Display contents	Display contents
1	Output frequency	$\begin{aligned} & \text { >F001 SET-Freq. } \\ & \text { FS } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00, Starting frequency-Max. frequency Hz
		>F001 SET-Freq. 2FS 0000.00 Hz	0.00, Starting frequency-2 ${ }^{\text {nd }}$ Max frequency Hz
		$\begin{aligned} & >\text { F001 SET-Freq. } \\ & 3 F S \quad 0000.00 \mathrm{~Hz} \end{aligned}$	0.00, Starting frequency- $3^{\text {rd }}$ Max frequency Hz (NOTE 1)
		$\begin{aligned} & \text { >F001 SET-Freq. } \\ & \text { TM } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00 , Starting frequency- $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \operatorname{Max}$ frequency Hz (NOTE 2)
		>F001 SET-Freq. JG 0000.00 Hz	0.00, Starting frequency $\sim 9.99 \mathrm{~Hz}$
		>F001 $01 S \quad 0000.00 \mathrm{~Hz}$	0.00 , Starting frequency $-1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Max frequency Hz (NOTE 2)
		$\begin{aligned} & >\text { F001 SET-Freq. } \\ & 15 \mathrm{~S} 0000.00 \mathrm{~Hz} \end{aligned}$	0.00 , Starting frequency- $1^{\text {st }}, 2^{\text {nd }} .3^{\text {rd }}$ Max frequency Hz (NOTE 2)
		>F001 SET-Freq. OP1 000.00 Hz	0.00 , Starting frequency- $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Max frequency Hz (NOTE 2)
		$\begin{aligned} & \text { >F001 SET-Freq. } \\ & \text { OP2 } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00 , Starting frequency $-1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Max frequency Hz (NOTE 2)
		$>F 001$ SET-Freq. RS485 000.00 Hz	0.00 , Starting frequency $-1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ Max frequency Hz (NOTE 2)
2	$1^{\text {st }}$ acceleration time	$>$ F002 ACCEL TIME1 0030.00 s	$0.01-3600.00 \mathrm{~s}$
3	$\begin{aligned} & 2^{\text {nd }} \quad \text { acceleration } \\ & \text { time } \end{aligned}$	>F202 2ACCEL TIME1 0030.00 s	0.01-3600.00 s
4	$3^{\text {rd }}$ acceleration time	>F302 3 ACCEL TIME1 0030.00 s	$0.01-3600.00 \mathrm{~s}$ (NOTE 1)
5	$1{ }^{\text {st }}$ deceleration time	$>$ F003 DECEL TIME1 0030.00 s	0.01-3600.00 s
6	$\begin{aligned} & 2^{\text {nd }} \text { deceleration } \\ & \text { time } \\ & \hline \end{aligned}$	>F203 2DECEL TIME1 0030.00 s	0.01-3600.00 s
7	$3^{\text {rd }}$ deceleration time	$\begin{array}{ll} \text { >F303 } & \text { 3DECEL } \\ \text { TIME1 } & 0030.00 \mathrm{~s} \\ \hline \end{array}$	$0.01-3600.00 \mathrm{~s}$ (NOTE 1)
8	Operation direction selection	$\begin{aligned} & \text { >F004 DIG-RUN } \\ & \text { SELECT FW } \end{aligned}$	FW/RV

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : 0.00 , Starting frequency $-1^{\text {st }}, 2^{\text {nd }}$ Max frequency (Hz)

(4) Function mode

(1/15)

No.	Function name	Display	Data range
1	Frequency setting selection	>A001 F-SET SELECT REM	TRM(terminal)/REM(operator)/RS485(RS485)/OP1(option 1)/OP2(option 2)
2	Operation setting selection	>A002 F/R SELECT REM	TRM(terminal)/REM(operator)/RS485(RS485)/OP1(option 1)/OP2(option 2)
3	Base frequency	$\begin{array}{cl} \hline \text { >A003 } & \text { F-BASE } \\ \mathrm{F} & 0060 \mathrm{~Hz} \\ \hline \end{array}$	30. - Maximum frequency Hz
4	Base frequency, $2^{\text {nd }}$ motor	$\begin{array}{cl} \hline \text { >A203 } & \text { 2F-BASE } \\ \mathrm{F} & 0060 \mathrm{~Hz} \end{array}$	30. $-2^{\text {nd }}$ Maximum frequency Hz
5	Base frequency, ${ }^{\text {rd }}$ motor	$>A 303$ 3F-BASE F 0060 Hz	$30 .-3^{\text {rd }}$ Maximum frequency Hz (NOTE 1)
6	Maximum frequency	$\begin{array}{cc} >A 004 & \text { F-max } \\ \text { F } & 0060 \mathrm{~Hz} \\ \hline \end{array}$	30-400 Hz
7	Maximum frequency $2^{\text {nd }}$ motor	$\begin{array}{cc} >A 204 & 2 \mathrm{~F}-\mathrm{max} \\ \mathrm{~F} & 0060 \mathrm{~Hz} \end{array}$	$30-400 \mathrm{~Hz}$
8	Maximum frequency $3^{\text {rd }}$ motor	$>A 304$ $3 \mathrm{~F}-\mathrm{max}$ F 0060 Hz	$30-400 \mathrm{~Hz}$ (NOTE 1)
9	AT selection terminal	$\begin{array}{lc} >A 005 & \text { AT } \\ \text { SELECT } & \text { O/OI } \\ \hline \end{array}$	O/OI(Changing of O and Ol with AT terminal)/ $\mathrm{O} / \mathrm{O} 2$ (Changing of O and O 2 with AT terminal)
10	O2 selection	$\begin{array}{ll} >A 006 & \text { O2 } \\ \text { SELECT } & \text { O2 } \end{array}$	O2(Single) / O/OI-P(auxillary speed of O , OI) [no reversible] /O/OI-PM(auxillary speed of O, Oi) [reversible]
11	O start	>A011 INPUT-O EXS 0000.00 Hz	$0.00-400.00 \mathrm{~Hz}$
12	O end	$\begin{aligned} & \text { >A012 INPUT-O } \\ & \text { EXE } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00-400.00 Hz
13	O start rate	>A013 INPUT-O EX\%S 000%	0-100 \%
14	O end rate	$\begin{array}{cc} >A 014 & \text { INPUT-O } \\ \text { EX\%E } & 100 \% \\ \hline \end{array}$	0-100 \%
15	O start selection	>A015 INPUT-O LEVEL $0 H z$	$\mathrm{O}-\mathrm{EXS}($ external $\mathrm{OHz}(\mathrm{OHz})$ starting frequency) /
16	O, OI, O2 sampling	$\begin{array}{cr} \hline \text { >A016 } & \text { INPUT } \\ \text { F-SAMP } & 08 \\ \hline \end{array}$	1-30 times
17	Multi-speed selection	>A019 SPEED SELECT BINARY	BINARY(range is to 16 stage speed with 4 terminals)/ BIT (range is to 8 stage speed with 7 terminals)
18	Multi-speed 0	>A020 SPEED FS 0000.00 Hz	0.00 , Starting frequency- maximum frequency (Hz)
19	Multi-speed $0,2^{\text {nd }}$ motor	>A220 SPEED 2 FS 0000.00 Hz	0.00 , Starting frequency- $2^{\text {nd }}$ maximum frequency(Hz)
20	Multi-speed $0,3^{\text {rd }}$ motor	>A320 SPEED 3FS 0000.00Hz	0.00 , Starting frequency- $3^{\text {rd }}$ maximum frequency (Hz) (NOTE 1)
21	Multi-speed 1	>A021 SPEED 01 S 0000.00 Hz	0.00 , Starting frequency-maximum frequency(Hz)
22	Multi-speed 2	>A022 SPEED 02 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
23	Multi-speed 3	>A023 SPEED 03 S 0000.00 Hz	0.00 , Starting frequency-maximum frequency(Hz)

| 24 | Multi-speed 4 | $>A 024$SPEED
 $04 S$
 0000.00 Hz$0.00 \quad, \quad$ Starting
 frequency (Hz) | frequency-maximum |
| :--- | :--- | :--- | :--- | :--- |

(NOTE 1) SJ300 series only .
(2/15)

No.	Function name	Display	Data range
25	Multi-speed 5	>A025 SPEED 05 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
26	Multi-speed 6	>A026 SPEED 06 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
27	Multi-speed 7	>A027 SPEED 07 S 0000.00 Hz	0.00 , Starting frequency-maximum frequency(Hz)
28	Multi-speed 8	>A028 SPEED 08 S 0000.00 Hz	0.00 , Starting frequency-maximum frequency (Hz)
29	Multi-speed 9	>A029 SPEED 09 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
30	Multi-speed 10	>A030 SPEED 10 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
31	Multi-speed 11	>A031 SPEED 11 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
32	Multi-speed 12	>A032 SPEED 12 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
33	Multi-speed 13	>A033 SPEED 13 S 0000.00 Hz	$0.00 \quad, \quad$ Starting frequency-maximum frequency (Hz)
34	Multi-speed 14	>A034 SPEED 14 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
35	Multi-speed 15	>A035 SPEED 15 S 0000.00 Hz	$0.00 \quad$, Starting frequency-maximum frequency (Hz)
36	Jogging frequency	$\begin{array}{cc} \hline>\text { A03 } & \text { Jogging } \\ \text { F } & 01.00 \mathrm{~Hz} \\ \hline \end{array}$	0.00, Starting frequency-9.99(Hz)
37	Jogging selection	$\begin{array}{cc}\text { >A039 } & \text { Jogging } \\ \text { Mode } & \text { FRS }\end{array}$	FRS(free-run on JG stop / invalid on running)/ DEC(stop decelerating on JG stop / invalid on running)/ DB(DC braking on JG stop / invalid on running)/ R-FRS(free-run on JG stop / valid on running [JG after stop decelerating])/ R-DEC(stop decelerating on JG stop / valid on running[JG after stop decelerating])/ R-DB(DC braking on JG stop / valid on running [JG after stop decelerating])
38	Torque boost Selection	>A041 V-Boost Mode MANUAL	MANUAL (manual torque boost)/ AUTO(automatic torque boost)
39	Torque boost selection, $2^{\text {nd }}$ motor	>A241 2V-Boost Mode MANUAL	MANUAL(manual torque boost)/ AUTO(automatic torque boost)
40	Manual boost Torque	$>A 042$ V-Boost Code 01.0%	0.0-20.0 \%
41	Manual Torque boost $2^{\text {nd }}$ motor	$\begin{array}{cc} \text { >A242 } & \text { 2V-Boost } \\ \text { Code } & 01.0 \% \end{array}$	0.0-20.0 \%

Chapter 10 LCD display and operating for SJ300/L300P series

42	Manual Torque boost $3{ }^{\text {rd }}$ motor 	>A342 Code	$\begin{gathered} \text { 3V-Boost } \\ 01.0 \% \end{gathered}$	0.0-20.0 \%	(NOTE 1)
43	Manual Torque boost point 	$\begin{gathered} >A 043 \\ \text { F } \end{gathered}$	$\begin{aligned} & \text { V-Boost } \\ & 05.0 \% \end{aligned}$	0.0-50.0 \%	
44	$\begin{aligned} & \text { Manual Torque } \\ & \text { boost } \\ & \text { point, } 2^{\text {nd }} \text { motor } \\ & \hline \end{aligned}$	$\begin{gathered} >A 243 \\ F \end{gathered}$	$\begin{aligned} & \text { 2V-Boost } \\ & 05.0 \% \end{aligned}$	0.0-50.0 \%	
45	Manual Torque boost point, $3^{\text {rd }}$ motor	$\begin{gathered} >A 343 \\ F \end{gathered}$	$\begin{aligned} & \text { 3V-Boost } \\ & 05.0 \% \end{aligned}$	0.0-50.0 \%	(NOTE 1)

(NOTE 1) SJ300 series only .
(3/15)

No.	Function name	Display	Data range
46	$1{ }^{\text {st }}$ control	$\begin{array}{cc}>A 044 & \text { Control } \\ \text { 1st } & \text { VC }\end{array}$	VC / VP / FREE-V/F / SLV / OSLV / V2
47	$2^{\text {nd }}$ control	$\begin{array}{cc} \hline \text { >A244 } & \text { 2Control } \\ \text { 2nd } & \text { VC } \\ \hline \end{array}$	VC / VP / FREE-V/F / SLV / OSLV
48	$3{ }^{\text {rd }}$ control	$>$ A344 3Control 3rd VC	(NOTE 2)
49	Output voltage again	>A045 V-Gain Gain 100%	20-100 \%
50	DC braking selection	$>A 051$ DCB Mode OFF	OFF(invalid) / ON(valid)
51	DC braking frequency	$\begin{array}{cr} >A 052 & \text { DCB } \\ F & 0.50 \mathrm{~Hz} \end{array}$	$0.00-60.00 \mathrm{~Hz}$
52	DC braking wait time	$>$ A053 DCB WAIT 0.0 s	0.0-5.0 s
53	DC braking power	$\begin{array}{lr} \hline>A 054 & \text { DCB } \\ \text { STP-V } & 000 \% \end{array}$	0-100\% (NOTE 3)
54	DC braking time	>A055 DCB STP-T 00.0 s	0.0-60.0 s
55	DC braking edge/level selection	$\begin{array}{lr} \hline \text { PA056 } & \text { DCB } \\ \text { KIND } & \text { LEVEL } \end{array}$	EDGE(edge action) / LEVEL(level action)
56	DC braking power (starting time)	$\begin{array}{lr} \text { >A057 } & \text { DCB } \\ \text { STA-V } & 000 \% \end{array}$	0-100\% (NOTE 3)
57	DC braking time (starting time)	$\begin{array}{lr} \hline \text { >A058 } & \text { DCB } \\ \text { STA-T } & 00.0 \mathrm{~s} \\ \hline \end{array}$	0.00-60.0 s
58	DC career frequency	>A059 DCB CARRIER 05.0 kHz	$0.5-15.0 \mathrm{kHz}$ (Derating) (NOTE 4)
59	$1^{\text {st }}$ maximum frequency limiter	>A061 LIMIT HIGH 0000.00 Hz	$0.00,1^{\text {st }}$ frequency lower limiter-maximum frequency (Hz)
60	$2^{\text {nd }}$ maximum frequency limiter	$\begin{array}{lr} \text { >A261 } & \text { 2LIMIT } \\ \text { HIGH } & 0000.00 \mathrm{~Hz} \end{array}$	$0.00,2^{\text {nd }}$ frequency lower limiter-2 ${ }^{\text {nd }}$ setting -maximum frequency (Hz)
61	$1^{\text {st }}$ minimum frequency limiter	$\begin{array}{cc} \text { >A062 } & \text { LIMIT } \\ \text { LOW } & 0000.00 \mathrm{~Hz} \end{array}$	0.00 ,start frequency-maximum frequency (Hz)
62	$2^{\text {nd }}$ minimum frequency limiter	>A262 2LIMIT LOW 0000.00 Hz	0.00 , start frequency- $2^{\text {nd }}$ setting-maximum frequency (Hz)
63	Jump frequency1	$>A 063 \quad$ JUMP F1 0000.00 Hz	0.00-400.00 Hz
64	Jump frequency width 1	$\begin{array}{lr} >A 064 & \text { JUMP } \\ \text { W1 } & 00.50 \mathrm{~Hz} \\ \hline \end{array}$	$0.00-10.00 \mathrm{~Hz}$

Chapter 10 LCD display and operating for SJ300/L300P series

65	Jump frequency2	$\begin{aligned} & >\text { >A065 JUMP } \\ & \text { F2 } \quad 0000.00 \mathrm{~Hz} \end{aligned}$	0.00-400.00 Hz
66	Jump frequency width 2	$\begin{array}{lr} >A 066 & \text { JUMP } \\ \text { W2 } & 00.50 \mathrm{~Hz} \\ \hline \end{array}$	$0.00-10.00 \mathrm{~Hz}$
67	Jump frequency3	$\begin{array}{lr} >\text { >A067 JUMP } \\ \text { F3 } \quad 0000.00 \mathrm{~Hz} \end{array}$	0.00-400.00 Hz
68	Jump frequency width 3	$>A 068$ JUMP W3 00.50 Hz	$0.00-10.00 \mathrm{~Hz}$
69	Acceleration stop frequency	$\begin{array}{lr} >A 069 & \text { F-STOP } \\ F & 0000.00 \mathrm{~Hz} \\ \hline \end{array}$	0.00-400.00 Hz
70	Acceleration stop time	>A070 F-STOP T 00.0 s	0.00-60.00 s

(NOTE 1) L300P series : VC / VP / FREE-V/F
(NOTE 2) SJ300 series only .
(NOTE 3) L300P series : 0-70\%
(NOTE 4) L300P series : $0.5-12.0 \mathrm{kHz}$ (Derating)
(4/15)

No.	Function name	Display	Data range
71	PID selection	$\begin{array}{lc} \hline \text { PA071 } & \text { PID } \\ \text { SW } & \text { OFF } \\ \hline \end{array}$	OFF(invalid) / ON(valid)
72	PID-P gain	$\begin{array}{cc} >\text { A072 } & \text { PID } \\ \mathrm{P} & 1.0 \\ \hline \end{array}$	0.2-5.0
73	PID-I gain	$\begin{aligned} & \text { >A073 PID } \\ & \mathrm{I} \quad 0001.0 \mathrm{~s} \\ & \hline \end{aligned}$	0.0-3600.0 s
74	PID-D gain	$\begin{array}{cr} \hline \text { >A074 } & \text { PID } \\ \text { D } & 000.00 \end{array}$	0.00-100.00 s
75	PID scale	>A075 PID CONV 01.00	0.01-99.99 \%
76	PID feedback Selection	>A076 PID INPUT OI	Ol(feedback: OI) / O(feedback: O)
77	AVR selection	$>$ A081 AVR MODE DOFF	ON(ON always)/OFF(OFF always)/ DOFF (OFF on decelerating)
78	Motor voltage selection	$\begin{array}{lc} >A 082 & \text { AVR } \\ \text { AC } & 200 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { 200/215/220/230/240, } \\ & 380 / 400 / 415 / 440 / 460 / 480 \\ & \hline \end{aligned}$
79	Operation mode selection	>A085 RUN MODE NOR	NOR(normal operation) / ECO(energy-saving operation) FUZZY(fuzzy) (NOTE 1)
80	Energy-saving response-accuracy adjustment	$\begin{array}{lr} >A 086 & \text { RUN } \\ \text { ECO } & 0050.0 \mathrm{~s} \end{array}$	0.0-100.0s
81	Acceleration time2	>A092 ACCEL TIME2 0015.00 s	0.01-3600.00 s
82	Acceleration time2 (2 ${ }^{\text {nd }}$ motor)	$\begin{array}{ll} >A 292 & \text { 2ACCEL } \\ \text { TIME2 } & 0015.00 \mathrm{~s} \\ \hline \end{array}$	0.01-3600.00 s
83	Acceleration time2 (3 ${ }^{\text {rd }}$ motor)	>A392 3ACCEL TIME2 0015.00 s	0.01-3600.00 s (NOTE 2)
84	Deceleration time2	$\begin{array}{lc} \hline \text { >A093 } & \text { DECEL } \\ \text { TIME2 } & 0015.00 \mathrm{~s} \\ \hline \end{array}$	0.01-3600.00 s
85	Deceleration time2 (2 ${ }^{\text {nd }}$ motor)	$\begin{array}{ll} >A 293 & \text { 2DECEL } \\ \text { TIME2 } & 0015.00 \mathrm{~s} \end{array}$	0.01-3600.00 s
86	Deceleration time2 $3^{\text {rd }}$ motor)	$>A 393$ 3DECEL TIME2 $0015.00 s$	0.01-3600.00 s (NOTE 2)
87	$2^{\text {nd }}$ stage adjustable selection	$\begin{aligned} & \text { >A094 ACCEL } \\ & \text { CHANGE TM } \\ & \hline \end{aligned}$	TM(change with 2CH terminal) / FREE(change with setting)

Chapter 10 LCD display and operating for SJ300/L300P series

88	$2^{\text {nd }}$ stage adjustable selection ($2^{\text {nd }}$ motor)	$\begin{gathered} \text { >A294 2ACCEL } \\ \text { CHANGE TM } \end{gathered}$	TM(change with 2CH terminal) / FREE(change with setting)
89	$2^{\text {nd }}$ acceleration frequency	>A095 ACCEL CHFr 0000.00 Hz	0.00-400.00 Hz
90	$2^{\text {nd }}$ acceleration frequency ($2^{\text {nd }}$ motor)	>A295 2ACCEL CHFr 0000.00 Hz	0.00-400.00 Hz
91	$2^{\text {nd }}$ deceleration frequency	$\begin{aligned} & \text { >A096 DECEL } \\ & \text { CHFr } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00-400.00 Hz
92	$2^{\text {nd }}$ deceleration frequency ($2^{\text {nd }}$ motor)	>A296 2DECEL CHFr 000.00 Hz	0.00-400.00 Hz
93	Acceleration pattern selection	>A097 ACCEL LINE Linear	Linear(straight line) / S-curve / U-curve /RV-curve(reverse U-curve)
94	Deceleration pattern selection	>A098 DECEL LINE Linear	Linear(straight line) / S-curve / U-curve /RV-curve(reverse U-curve)

(NOTE 1) L300P series : NOR / ECO
(NOTE 2) SJ300 series only .
(5/15)

No.	Function mode	Display	Data range
95	Ol start	>A101 INPUT-OI EXS 0000.00 Hz	$0.00-400.00 \mathrm{~Hz}$
96	Ol end	$\begin{aligned} & \text { >A102 INPUT-OI } \\ & \text { EXE } 0000.00 \mathrm{~Hz} \end{aligned}$	$0.00-400.00 \mathrm{~Hz}$
97	Ol start rate	$\begin{array}{cc} \hline \text { >A103 INPUT-OI } \\ \text { EX\%S } \quad 20 \% \end{array}$	0-100\%
98	Ol end rate	$\begin{array}{cc} >A 104 & \text { INPUT-OI } \\ \text { EX\%E } & 100 \% \\ \hline \end{array}$	0-100\%
99	Ol start selection	$\begin{array}{cc} \hline \text { >A105 INPUT-OI } \\ \text { LEVEL } \quad 0 \mathrm{~Hz} \\ \hline \end{array}$	OI-EXS(external start frequency) / OHz
100	O2 start	>A111 INPUT-O2 EXS +0000.00 Hz	-400.00-400.00 Hz
101	O2 end	$\begin{aligned} & >\text { A112 INPUT-O2 } \\ & \text { EXE }+0000.00 \mathrm{~Hz} \\ & \hline \end{aligned}$	-400.00-400.00 Hz
102	O2 start rate	$\begin{gathered} \text { >A113 INPUT-O2 } \\ \text { EX\%S }-100 \% \end{gathered}$	-100-100 \%
103	O2 end rate	$\begin{array}{cc} \hline \text { >A114 } & \text { INPUT-O2 } \\ \text { EX\%E } \\ +100 \% \end{array}$	-100-100\%
104	Acceleration curve constant	>A131 ACCEL GAIN 02	01(small swelling)-10(large swelling)
105	Deceleration curve constant	>A132 DECEL GAIN 02	01(small swelling)-10(large swelling)
106	Retry selection	$\begin{array}{lc} >\text { b001 } & \text { IPS } \\ \text { POWER } & \text { ALM } \end{array}$	ALM(trip) / ZST(Ohz start) / RST(start after equaling frequency) / FST(trip after equaling frequency and deceleration stop)
107	Allowable under-voltage power failure time	$\begin{array}{lr} >\text { b002 } & \text { IPS } \\ \text { TIME } & 1.0 \mathrm{~s} \end{array}$	0.3-1.0 s
108	Retry wait time	$>$ b003 IPS WAIT 001.0 s	0.3-100.0 s
109	Instantaneous power failure/under-voltag e trip during stop	$\begin{array}{lr} >\text { b004 } & \text { IPS } \\ \text { TRIP } & \text { OFF } \end{array}$	OFF(invalid) / ON(valid) / DOFF(invalid during stop and deceleration by stop command)

Chapter 10 LCD display and operating for SJ300/L300P series

110	Instantaneous power failure/under-voltag e retry time selection	$\begin{array}{lr} >\text { b005 } & \text { IPS } \\ \text { RETRY } & 16 \end{array}$	16(16 times) / FREE(free)
111	Open-phase selection	$\begin{array}{lr} \text { >b006 } & \text { PH-FAIL } \\ \text { SELECT } & \text { OFF } \end{array}$	OFF(invalid) / ON(valid)
112	Frequency setting to match	$\begin{aligned} & >\text { b007 IPS } \\ & \mathrm{F} \quad 0000.00 \mathrm{~Hz} \end{aligned}$	$0.00-400.00 \mathrm{~Hz}$
113	Electronic thermal level	$>b 012$ E-THM LEVEL 0000.0 A	0.2*constant current-1.20*constant current(A)
114	Electronic thermal level (2 ${ }^{\text {nd }}$ motor)	$>b 212$ $2 E-T H M$ LEVEL 0000.0 A	0.2*constant current-1.20*constant current(A)
115	Electronic thermal level (${ }^{\text {rd }}$ motor)	$>b 312$ $3 E-T H M$ LEVEL 0000.0 A	0.2^{*} constant current-1.20*constant current(A) (NOTE 1)
116	$1^{\text {st }}$ electronic thermal characteristic selection	$\begin{array}{cc} >\text { b013 } & \text { E-THM } \\ \text { CHAR } & \text { SUB } \end{array}$	SUB(reduced characteristic) / CRT(constant torque characteristic) / FREE (free setting)
117	$2^{\text {nd }}$ electronic thermal characteristic selection	$\begin{array}{cc} >b 213 & \text { 2E-THM } \\ \text { CHAR } & \text { SUB } \end{array}$	SUB(reduced characteristic) / CRT(constant torque characteristic) / FREE(free setting)

(NOTE 1) SJ300 series only .
(6/15)

No.	Function name	Display	Data range
118	$3^{\text {ra }}$ thermal electronic characteristic selection	$\begin{array}{cc} >\text { b313 } & \text { 3E-THM } \\ \text { CHAR } & \text { SUB } \end{array}$	SUB(reduced characteristic) / CRT(constant torque characteristic) / FREE(free setting) (NOTE 1)
119	Free electronic thermal frequency 1	$\begin{array}{cc} >\text { b015 } & \text { E-THM } \\ \text { F1 } & 0000 \mathrm{~Hz} \end{array}$	0-400 (Hz)
120	Free electronic thermal current 1	$\begin{array}{cr} >b 016 & \text { E-THM } \\ \text { A1 } & 0000.0 \mathrm{~A} \\ \hline \end{array}$	0.0-1000.0(A)
121	Free electronic thermal frequency 2	$\begin{array}{cc} >\mathrm{b} 017 & \text { E-THM } \\ \text { F2 } & 0000 \mathrm{~Hz} \\ \hline \end{array}$	0-400 (Hz)
122	Free electronic thermal current 2	$\begin{array}{ll} >\text { b018 } & \text { E-THM } \\ \text { A2 } & 0000.0 \mathrm{~A} \\ \hline \end{array}$	0.0-1000.0(A)
123	Free electronic thermal frequency 3	$\begin{array}{ll} >\text { b019 } & \text { E-THM } \\ \text { F3 } & 0000 \mathrm{~Hz} \\ \hline \end{array}$	0-400 (Hz)
124	Free electronic thermal current 3	$\begin{array}{lr} >\text { >b020 } & \mathrm{E} \text {-THM } \\ \text { A3 } & 0000.0 \mathrm{~A} \end{array}$	0.0-1000.0(A)
125	Overload restriction selection	$\begin{array}{ll} >b 021 & \text { OLOAD } \\ \text { 1MODE } & \text { ON } \end{array}$	OFF(invalid) / ON(enabled on acceleration / constant speed) / CRT(enabled on constant speed) / R-OFF(enabled on acceleration / constant speed(speed increasing at regenerating mode))
126	Overload restriction level	$\begin{array}{ll} \hline>b 022 & \text { OLOAD } \\ \text { 1LEVEL } & 0000.0 \mathrm{~A} \\ \hline \end{array}$	0.5^{*} rated current-2.00* rated current(A) (NOTE 2)
127	Overload restriction limit constant	$\begin{array}{lr} >\text { b023 } & \text { OLOAD } \\ \text { 1CONST } & 01.00 \\ \hline \end{array}$	0.10-30.00(s)
128	Overload restriction selection 2	>b024 OLOAD 2MODE ON	OFF(invalid) / ON(enabled on acceleration / constant speed) / CRT(enabled on constant speed) / R-OFF(enabled on acceleration / constant speed(speed increasing at regenerating mode))

Chapter 10 LCD display and operating for SJ300/L300P series

| 129 | Overload restriction
 level 2 | >b025
 2LEVEL | OLOAD
 0000.0A | 0.5^{*} rated current-2.00* rated current(A) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (NOTE 2) | | | | |$|$

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : 0.5^{*} rated current-1.50* rated current(A)
(7/15)

No.	Function name	Display	Data range
136	Torque limit mode selection	>b040 TRQ_LIMIT Mode $4-S E T$	4-SET(4 quadrant mode) / TM(terminal operation) / O2 (Analog input) / OP1(Option 1) / OP2(option 2) (NOTE 1)
137	Torque limit level 1 setting (Forward-regenerati ng at 4 quadrant mode	>b041 TRQ_LIMIT LEVEL1 150\%	0-200(\%),no(invalid) (NOTE 1)
138	Torque limit level 2 (Reverse-regenerati ng at 4 quadrant mode)	>b042 TRQ_LIMIT LEVEL2 150\%	0-200(\%),no(invalid) (NOTE 1)
139	Torque limit level 3 (Reverse-driving at 4 quadrant mode)	>b043 TRQ_LIMIT LEVEL3 150\%	0-200(\%),no(invalid) (NOTE 1)
140	Torque limit level 4 setting (Forward-regenerati ng at 4 quadrant mode	>b044 TRQ_LIMIT LEVEL4 150\%	0-200(\%),no(invalid) (NOTE 1)
141	Torque LAD-STOP selection	>b045 TRQ_LIMIT SELECT OFF	OFF(invalid) / ON(valid) (NOTE 1)
142	Reverse run prevention selection	$>b 046$ LIMIT PREV OFF	OFF(invalid) / ON(valid) (NOTE 1)
143	Selection non-stop function at instantaneous power failure	>b050 IPS-DECEL Mode OFF	OFF(invalid) / ON(valid) (NOTE 1)

Chapter 10 LCD display and operating for SJ300/L300P series

144	Start voltage of nonstop function setting	$\begin{aligned} & \text { >b051 IPS-DECEL } \\ & \text { V1 } 0000.0 \mathrm{Vdc} \end{aligned}$	0.0-999.9(V) (NOTE 1)
145	OV LAD-STOP level of non-stop function setting	>b052 IPS-DECEL V2 0000.0Vdc	0.0-999.9(V) (NOTE 1)
146	Deceleration time of non-stop function setting	>b053 IPS-DECEL TIME $\quad 1.00 \mathrm{~s}$	0.01-3600.00(s) (NOTE 1)
147	Deceleration frequency width of non-stop function setting	>b054 IPS-DECEL DEC-F 00.00 Hz	0.0-10.00(Hz) (NOTE 1)
148	AM adjustment	>b080 AM-MONITOR ADJUST 180	0-255
149	FM adjustment	$\begin{aligned} & \text { >b081 FM-MONITOR } \\ & \text { ADJUST } 060 \end{aligned}$	0-255
150	Start frequency adjustment	$\begin{array}{lr} \hline>\mathrm{b} 082 & \mathrm{fmin} \\ \mathrm{~F} \quad 00.50 \mathrm{~Hz} \end{array}$	0.10-9.99(Hz)
151	Carrier frequency setting	>b083 CARRIER F 05.0 kHz	0.5-15.0(kHz) (Derating) (NOTE 2)
152	Initialize mode	$\begin{array}{cc}>b 084 & \text { INITIAL } \\ \text { MODE } & \text { TRP }\end{array}$	TRP(trip history clear) / DATA(data initialization) / TRP/DATA(trip history clear + data initialization)
153	Country code for initialization	$\begin{array}{ll} \hline \text { >b085 } & \text { INITIAL } \\ \text { SELECT } \end{array}$	JPN / EC / USA
154	Frequency scalar conversion factor	$>$ b086 F-CONV Gain 001.0	0.1-99.9

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : 0.5-12.0kHz (Derating)
(8/15)

No.	Function name	Display	Data range
155	Stop key enable	$\begin{array}{cc} >b 087 & \text { STOP-SW } \\ \text { SELECT } & \text { OFF } \end{array}$	ON(valid) / OFF(invalid)
156	Resume on FRS cancellation mode	$>b 088$ RUN FRS ZST	ZST(OHz start) / fST(Strat f-equaling)
157	BDR usage ratio	$\begin{array}{cc} >\text { b090 } & \text { BRD } \\ \% \text { \%ED } & 000.0 \% \\ \hline \end{array}$	0.0-100.0(\%)
158	Stop mode selection	$>b 091$ RUN STOP DEC	DEC(deceleration stop) / FRS(Free-run stop)
159	Cooling fun control	$\begin{array}{ll}>b 092 & \text { INITIAL } \\ \text { FAN-CTL OFF }\end{array}$	OFF(always ON) / ON(ON during run, After power ON, then for 5 minutes on stop is implied.)
160	BRD selection	$>$ b095 BRD Mode OFF	OFF(invalid) / ON_STPOFF(valid<invalid During stop>) During stop>) ON_STPON(valid<valid
161	BED ON level	>b096 BRD LEVEL 0360Vdc	330-380/660-760(Vdc)
162	Thermistor selection	$\begin{array}{lr} >\text { b098 } & \text { THERM } \\ \text { SELECT } & \text { OFF } \\ \hline \end{array}$	OFF(invalid) / PTC(positive temperature coefficient enable) / NTC(NTC enable)
163	Thermistor error level	$\begin{array}{cr} \hline \text { >b099 } & \text { THERM } \\ \text { LEVEL } & 3000 \mathrm{ohm} \\ \hline \end{array}$	0-9999(ohm)
164	Free V/F frequency 1	$>b 100$ FREE_V/F F1 0000 Hz	0 - Free V/F frequency2(Hz)

Chapter 10 LCD display and operating for SJ300/L300P series

165	Free V/F voltage 1	$\begin{array}{cc}>b 101 & \text { FREE_V/F } \\ \text { V1 } & 000.0 \mathrm{~V}\end{array}$	0-800.0(V)	
166	Free V/F frequency 2	>b102 FREE_V/F F2 0000 Hz	0 - Free V/F frequency3(Hz)	
167	Free V/F voltage 2	$>b 103$ FREE_V/F V2 000.0 V	0-800.0(V)	
168	Free V/F frequency 3	$\begin{array}{cc} \hline \text { >b104 } & \text { FREE_V/F } \\ \text { F3 } & 0000 \mathrm{~Hz} \end{array}$	0 - Free V/F frequency4(Hz)	
169	Free V/F voltage 3	$>b 105$ FREE_V/F V3 000.0 V	0-800.0(V)	
170	Free V/F frequency 4	$>b 106$ FREE_V/F F4 0000 Hz	0 - Free V/F frequency5(Hz)	
171	Free V/F voltage 4	$\begin{array}{cc} >b 107 & \text { FREE_V/F } \\ \text { V4 } & 000.0 \mathrm{~V} \\ \hline \end{array}$	0-800.0(V)	
172	Free V/F frequency 5	>b108 FREE_V/F F5 0000 Hz	0 - Free V/F frequency6(Hz)	
173	Free V/F voltage 5	$>b 109$ FREE_V/F V5 000.0 V	0-800.0(V)	
174	Free V/F frequency 6	$>b 110$ FREE_V/F F6 0000 Hz	0 - Free V/F frequency $7(\mathrm{~Hz}$)	
175	Free V/F voltage 6	$>b 111$ FREE_V/F V6 000.0 V	0-800.0(V)	
176	Free V/F frequency 7	>b112 FREE_V/F F7 0000 Hz	0-400(Hz)	
177	Free V/F voltage 7	$>b 113$ FREE_V/F V7 000.0 V	0-800.0(V)	
178	Braking control selection	$>b 120$ BRAKE Mode OFF	OFF(invalid) / ON(valid)	(NOTE 1)
179	Waiting time for releasing braking conformation	>b121 BRAKE STA-WAIT 0.00s	0.00-5.00(s)	(NOTE 1)

(NOTE 1) SJ300 series only .
(9/15)

No.	Function name	Display	Data range
180	Waiting time for acceleration	$\begin{aligned} & \hline \text { >b122 BRAKE } \\ & \text { ACC-WAIT } 0.00 \mathrm{~s} \end{aligned}$	0.00-5.00(s) (NOTE 1)
181	Waiting time for stop	$\begin{aligned} & >\text { b123 BRAKE } \\ & \text { STP-WAIT } 0.00 \text { s } \end{aligned}$	0.00-5.00(s) (NOTE 1)
182	Waiting time for signal conformation	>b124 BRAKE BRK-WAIT 0.00 s	0.00-5.00(s) (NOTE 1)
183	Releasing frequency	>b125 BRAKE OPEN-F 000.00Hz	0.00-400.00(Hz) (NOTE 1)
184	Releasing current	>b126 BRAKE OPEN-A 0000.0 A	0.00^{*} rated current-2.00*rated current(A) (NOTE 1)
185	Intelligent input 1 setting	$>C 001$ IN-TM 1 RS	$\begin{array}{\|l} \hline \mathrm{RV} \text { (Reverse is valid) / CF1(Multi-speed1) / } \\ \text { CF2(Multi-speed2) / CF3(Multi-speed3) } \end{array}$
186	Intelligent input 2 setting	$\begin{array}{cc} >C 002 & \text { IN-TM } \\ 2 & \text { AT } \\ \hline \end{array}$	CF4(Multi-speed4) / JG(Jogging) / DB(External DC braking) / SET($2^{\text {hd }}$ control $) /$
187	Intelligent input 3 setting	$\begin{array}{cc} >C 003 & \text { IN-TM } \\ 3 & \text { JG } \\ \hline \end{array}$	2 CH (two-stage adjustable speed) FRS(Free-run) / EXT(External trip)
188	Intelligent input 4 setting	$>C 004$ IN-TM 4 FRS	USP(Unattended start protection) CS(Commercial change) / SFT(software lock)
189	Intelligent input 5 setting	$\begin{array}{cc} >C 005 & \text { IN-TM } \\ 5 & 2 \mathrm{CH} \\ \hline \end{array}$	/ AT(Analog input voltage/current select) SET3(3 ${ }^{\text {rd }}$ control) / RS(Reset inverter)

Chapter 10 LCD display and operating for SJ300/L300P series

190	Intelligent input 6 setting (NOTE 1)	$\begin{gathered} >C 006 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \text { IN-TM } \\ & \text { CF2 } \\ & \hline \end{aligned}$	SET3(3 ${ }^{\text {rd }}$ control) / RS(Reset inverter) / STA(3wire run) / STP(3wire keep) / F/R(3wire
191	Intelligent input 7 setting (NOTE 1)	$\begin{gathered} >C 007 \\ 7 \end{gathered}$	$\begin{aligned} & \text { IN-TM } \\ & \text { CF1 } \end{aligned}$	forward/reverse) / PiD(PiD selection valid invalid) / PIDC(PID integrating reset)
192	Intelligent input 8 setting (NOTE 1)	$\begin{gathered} >C 008 \\ 8 \end{gathered}$	$\begin{gathered} \text { IN-TM } \\ \text { RV } \end{gathered}$	CAS(Control gain switch function) UP(Remote control UP function) DWN(Remote control DOWN function) UDC(Remote control data clear) OPE(Operating by operator select) / SF1(Multi-speed bit1) / SF2(Multi-speed bit2) SF3(Multi-speed bit3) / SF4(Multi-seed bit4) / SF5(Multi-speed bit5) / SF6(Multi-speed bit6) SF7(Multi-speed bit7) / OLR(Overload restriction change) / TL(Torque limit select) / TRQ1(Torque limit switch1) / TRQ2(Torque limit switch2) / PPI(P/PI switch) / BOK(Braking conformation) / ORT(Orientation) / LAC(LAD cancel) / PCLR(Position error clear) / STAT(Permission of pulse train) / no(No assign) (NOTE 2)
193	Intelligent input 1 a/b ($\mathrm{NO} / \mathrm{NC}$) selection	$\begin{array}{r} >C 011 \\ \text { O/C-1 } \end{array}$	$\begin{gathered} \text { IN-TM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \end{aligned}$
194	Intelligent input 2 a/b (NO/NC) selection	$\begin{array}{r} >C 012 \\ \mathrm{O} / \mathrm{C}-2 \end{array}$	$\begin{gathered} \text { IN-TM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \mathrm{NO}: \mathrm{NO} \\ & \mathrm{NC}: ~ N C \end{aligned}$
195	Intelligent input 3 a/b ($\mathrm{NO} / \mathrm{NC}$) selection	$\begin{array}{r} >C 013 \\ \mathrm{O} / \mathrm{C}-3 \end{array}$	$\begin{gathered} \text { IN-TM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { NO: NO } \\ & \text { NC : NC } \end{aligned}$
196	Intelligent input 4 a/b ($\mathrm{NO} / \mathrm{NC}$) selection	$\begin{array}{r} >C 014 \\ \text { O/C-4 } \end{array}$	$\begin{gathered} \text { IN-TM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \end{aligned}$
197	Intelligent input 5 a/b (NO/NC) selection	$\begin{array}{r} >C 015 \\ \text { O/C-5 } \end{array}$	$\begin{gathered} \text { IN-TM } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \end{aligned}$

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : RV / CF1-CF4 / JG / DB / SET / 2CH / FRS / EXT / USP / CS / SFT / AT / RS / STA / STP / F/R / PID / PIDC / UP / DWN / UDC / OPE / SF1-SF7 / OLR / no

201	Input FW a/b (NO/NC) selection	$\begin{aligned} & >C 019 \\ & \text { O/C-FW } \end{aligned}$	$\begin{array}{r} \mathrm{IN}-\mathrm{TM} \\ \mathrm{NO} \end{array}$	$\begin{aligned} & \text { NO: NO } \\ & \text { NC : NC } \end{aligned}$
202	Intelligent output 11 setting	$\begin{gathered} >\mathrm{CO21} \\ 11 \end{gathered}$	OUT-TM FA1	RUN(running) / FA1(Frequency arrival type1 signal) / FA2(over setting frequency) OL(Overload advance notice signal) OD(Output deviation for PID control) AL(Alarm signal) / FA3(Only setting frequency) / OTQ(Over-torque signal) / IP(On instantaneous stop) / UV(Under voltage) TRQ(Torque limit) / RNT(RUN time over) ONT(ON time over) / THM(thermal caution) / BRK(Brake release signal) / BER(Brake error signal) / ZS(Zero speed detect signal) DSE(Speed error over signal) POK(Positioning completion signal) FA4(Over frequency 2 signal) / FA5(Only setting frequency) / OL2(Overload advance notice signal 2) (Intelligent output terminal 11-13 or 11-14 becomes AC0-AC2 or ACO-AC3 (Can; Alarm cord output) forcibly when alarm code output is selected in C062) (NOTE 2)
203	Intelligent output 12 setting	$\begin{gathered} >\mathrm{CO22} \\ 12 \end{gathered}$	OUT-TM RUN	
204	Intelligent output 13 setting (NOTE 1)	$\begin{gathered} >\mathrm{CO} 23 \\ 13 \end{gathered}$	$\begin{gathered} \text { OUT-TM } \\ \text { OL } \end{gathered}$	
205	Intelligent output 14 setting (NOTE 1)	$\begin{gathered} >\mathrm{CO} 24 \\ 14 \end{gathered}$	OUT-TM OTQ	
206	Intelligent output 15 setting (NOTE 1)	$\begin{gathered} >\mathrm{CO} 025 \\ 15 \end{gathered}$	$\begin{gathered} \hline \text { OUT-TM } \\ \text { IP } \end{gathered}$	
207	Alarm relay output	$\begin{gathered} >\mathrm{CO} 026 \\ \mathrm{AL} \end{gathered}$	OUT-TM AL	
208	FM selection	$$		A-F(Output frequency) / A(Output current) / T(Output torque) / D-F(Digital output frequency) / V(Output voltage) / P(Input electric power) / THM(:thermal load rate) / LAD (LAD frequency) (NOTE 3)
209	AM selection	>C028AM-MONITORKIND A-F		A-F(Output frequency) / A(Output current) T (Output torque) / V(Output voltage) / P (Input electric power)/ THM(thermal load rate) LAD (LAD frequency) (NOTE 3)
210	AM selection	$\begin{gathered} >C 029 \\ \text { KIND } \end{gathered}$	$\underset{\text { AMI-MON }}{\text { AMO }}$	A-F(Output frequency) / A(Output current) / T (Output torque) / V(Output voltage) / P (Input electric power)/ THM(thermal load rate) / LAD(LAD frequency) (NOTE 3)
211	Intelligent output 11 a/b	$\begin{aligned} & >C 031 \\ & \text { O/C-11 } \end{aligned}$	OUT-TM NO	NO: NO NC : NC
212	Intelligent output 12 a/b	$\begin{aligned} & >C 032 \\ & \text { O/C-12 } \end{aligned}$	OUT-TM NO	$\begin{aligned} & \text { NO: NO } \\ & \text { NC: NC } \end{aligned}$
213	Intelligent output 13 a/b	$\begin{aligned} & >C 033 \\ & \text { O/C-13 } \end{aligned}$	OUT-TM NO	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \quad \text { (NOTE 1) } \end{aligned}$
214	Intelligent output 14 a/b	$\begin{aligned} & >C 034 \\ & \text { O/C-14 } \end{aligned}$	$\begin{aligned} & \text { OUT-TM } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \end{aligned}$
215	Intelligent output 15 a/b	$\begin{aligned} & >C 035 \\ & \text { O/C-15 } \end{aligned}$	OUT-TM NO	$\begin{aligned} & \text { NO : NO } \\ & \text { NC : NC } \quad \text { (NOTE 1) } \end{aligned}$

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : RUN / FA1 / FA2 / OL / OD / AL / FA3 / IP / UV / RNT / ONT / THM
(NOTE 3) L300P series : Except T (Output Torque)

No.	Function name	Display	Data range
216	Alarm relay output a/b	$\begin{array}{cc} >C 036 & \text { OUT-TM } \\ \text { O/C-AL } & \text { NC } \end{array}$	NO: NO NC : NC
217	Overload advance notice signal output mode	$>\mathrm{CO} 40$ OL Mode CRT	ON(On accel. And decel,constant speed) / CRT(Only constant speed)
218	Overload advance notice level	$\begin{array}{cc} \hline>C 041 & O L \\ \text { LEVEL } & 0000.0 \mathrm{~A} \\ \hline \end{array}$	0.0-2.0*rated current (A)
219	Frequency arrival setting for acceleration.	$>$ C042 ARV ACC 0000.00 Hz	0.00-400.00(Hz)
220	Arrival frequency setting for deceleration	$\begin{aligned} & >C 043 \quad \text { ARV } \\ & \text { DEC } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00-400.00(Hz)
221	PID deviation setting level	$\begin{array}{cc} \hline \text { PC044 } & \text { PID } \\ \text { LEVEL } & 003.0 \% \\ \hline \end{array}$	0.0-100.0(\%)
222	Frequency arrival for deceleration 2.	$\begin{array}{cc} >C 045 & \text { ARV } \\ \text { ACC2 } 0000.00 \mathrm{~Hz} \end{array}$	0.00-400.00(Hz) ${ }^{\text {(NOTE 1) }}$
223	Arrival frequency setting for deceleration 2.	$\begin{aligned} & >C 046 \text { ARV } \\ & \text { DEC2 } 0000.00 \mathrm{~Hz} \end{aligned}$	0.00-400.00(Hz) (NOTE 1)
224	Over torque level setting (Forward-driving)	$\begin{array}{cc} >C 055 & \text { OV-TRQ } \\ \text { FW-V } & 100 \% \end{array}$	0-200(\%) (NOTE 1)
225	Over torque level setting (Reverse-regenerati $\mathrm{ng})$	$\begin{array}{cc} >C 056 & \text { OV-TRQ } \\ \text { RV-R } & 100 \% \end{array}$	0-200(\%) (NOTE 1)
226	Over torque level setting (Reverse-driving)	$\begin{array}{cc} >C 057 & \text { OV-TRQ } \\ \text { RV-V } & 100 \% \end{array}$	0-200(\%) \quad (NOTE 1)
227	Over torque level setting (Forward-regenerati ng)	$\begin{array}{cc} >C 058 & \text { OV-TRQ } \\ \text { FW-R } & 100 \% \end{array}$	0-200(\%) (NOTE 1)
228	Thermal warning level setting	$\begin{array}{cc} \hline \text { PC061 } & \text { E-THM } \\ \text { WARN } & 080 \% \\ \hline \end{array}$	0-100(\%)
229	Alarm code selection	$\begin{gathered} >\text { C062 AL-CODE } \\ \text { SELECT OFF } \end{gathered}$	OFF(invalid) / 3BIT(3bit) / 4BIT(4bit) (NOTE 1)
230	Zero speed detection level setting	$\begin{array}{cc} >C 063 \\ \text { LEVEL } & \text { ZS } \\ 000.00 \mathrm{~Hz} \end{array}$	0.00-100.00(Hz) (NOTE 1)
231	Data command	$\begin{array}{lr} \hline>C 070 & \text { PARAM } \\ \text { SELECT } & \text { REM } \\ \hline \end{array}$	REM(Operator) I RS485(RS485) / OPT1(option1) / OPT2(option2)
232	Communicating transmission speed	$>C 071$ RS485 BAU 4800 bps	TEST(Loop-back test) 2400bps,4800bps,9600bps,19200bps
233	Communication code	$\begin{array}{lr} \hline>\text { C072 } & \text { RS485 } \\ \text { ADDRESS } & 01 \\ \hline \end{array}$	01-32
234	Communication bit	$>C 073$ RS485 BIT 7BIT	7BIT(7bit) / 8BIT(8bit)
235	Communication parity	$>C 074$ RS485 PARITY NO	NO(No parity name) / EVN(even parity) ODD(odd parity

236	Communication stop bit	$\begin{array}{lr} >\text { C075 } & \text { RS485 } \\ \text { STOPBIT } & 1 \text { BIT } \end{array}$	1BIT (1 bit) / 2BIT(2bit)
237	Communication waiting time	$>$ C078 RS485 WAIT 0000 ms	0-1000(ms)

(NOTE 1) SJ300 series only .
(12/15)

No.	Function name	Display	Data range
238	O adjustment	$\begin{array}{cc}>C 081 & \text { O-ADJUST } \\ \text { TOP } & 00000\end{array}$	0-65535
239	Ol adjustment	$>C 082$ OI-ADJUST TOP 00000	0-65535
240	O2 adjustment	$>C 083$ O2-ADJUST TOP 00000	0-65535
241	Thermistor adjustment	$>C 085$ THERM ADJUST 0105.0	0.0-1000.0
242	AM off set adjustment	$\begin{gathered} >\text { C086 } \\ \text { AM-MONITOR } \\ \text { OFFSET } 00.0 \mathrm{~V} \end{gathered}$	0.0-10.0(V)
243	AMi adjustment	$\begin{array}{cc} >C 087 & \text { AMI-MON } \\ \text { ADJUST } 080 \end{array}$	0-255
244	Ami off set adjustment	$\begin{array}{lr} \hline>\text { C088 } & \text { AMI-MON } \\ \text { OFFSET } & 04.0 \mathrm{~mA} \\ \hline \end{array}$	0.0-20.0(mA)
245	Debug mode selection	$>C 091$ INITIAL DEBG OFF	OFF(No display) / ON(display)
246	UP/DOWN selection	$>C 101$ UP/DWN DATA NO-STR	NO-STR(No frequency data) STR(Keep frequency data)
247	Reset selection	$\begin{array}{lr}>C 102 & \text { RESET } \\ \text { SELECT } & \text { ON }\end{array}$	ON(Trip cancel during ON) / OFF(Trip cancel during OFF) TRP(Valid only during trip<Cancel during ON>)
248	Reset f frequency matching selection	$>C 103$ RESET f-Mode ZST	ZST(OHz star) / fST(Start f-equaling)
249	Overload advance notice level	$\begin{array}{cc} >C 111 & \mathrm{OL} \\ \text { LEVEL2 } & 0000.0 \mathrm{~A} \\ \hline \end{array}$	0.00-2.00*rated current(A) (NOTE 1)
250	O zero adjustment	$\begin{array}{cc} >C 121 & \text { O-ADJUST } \\ \text { ZERO } & 00000 \end{array}$	0-65535
251	Ol zero adjustment	$>C 122$ OI-ADJUST ZERO 00000	0-65535
252	O2 zero adjustment	$\begin{aligned} & \text { >C123 O2-ADJUST } \\ & \text { ZERO } 00000 \end{aligned}$	0-65535
253	Autotuning selection	$>H 001$ AUX AUTO NOR	NOR(Invalid) / NRT(Valid (the motor does not rotate))/AUT(Valid (the motor rotates)) (NOTE 1)
254	$1^{\text {st }}$ motor constant selection	$>H 002$ AUX DATA NOR	NOR(Hitachi general purpose motor data) / AUT(Autotuning data) / ON-AUT(Autotuning data with online autotuning) (NOTE 1)
255	$2^{\text {nd }}$ motor constant selection	$\begin{array}{cl} >H 202 & 2 A U X \\ \text { DATA } & \text { NOR } \end{array}$	NOR(Hitachi general purpose motor data) / AUT(Autotuning data) / ON-AUT(Autotuning data with online autotuning) (NOTE 1)
256	$1^{\text {st }}$ allowable motor selection	$\begin{array}{lr} >\mathrm{H} 003 & \mathrm{AUX} \\ \mathrm{~K} \quad 005.50 \mathrm{~kW} \\ \hline \end{array}$	0.20-75.0(kW)
257	$2^{\text {nd }}$ allowable motor selection	$\begin{array}{lr} >\mathrm{H} 203 & 2 \mathrm{AUX} \\ \mathrm{~K} \quad 005.50 \mathrm{~kW} \end{array}$	0.20-75.0(kW)
258	$1^{\text {st }}$ motor pole selection	$>H 004$ AUX P 4 P	2P,4P,6P,8P (pole)

259	$2^{\text {nd }}$ motor pole selection	$\begin{gathered} >\mathrm{H} 204 \\ \mathrm{P} \end{gathered}$	$\begin{gathered} \text { 2AUX } \\ 4 \mathrm{P} \end{gathered}$	2P,4P,6P,8P (pole)	
260	$1^{\text {st }}$ speed response setting	$\begin{gathered} >\mathrm{H} 005 \\ \text { KP } \\ \hline \end{gathered}$	$\begin{array}{r} \text { AUX } \\ 1.590 \\ \hline \end{array}$	0.001-65.535	(NOTE 1)
261	$2^{\text {nd }}$ speed response setting	$\begin{gathered} >\mathrm{H} 205 \\ \mathrm{KP} \end{gathered}$	$\begin{gathered} 2 \mathrm{AUX} \\ 1.590 \end{gathered}$	0.001-65.535	(NOTE 1)

(NOTE 1) SJ300 series only .
(13/15)

No.	Function name	Display	Data range	
262	$1^{\text {st }}$ stabilized factor	$>H 006$ AUX KCD 100	0-255	
263	$2^{\text {nd }}$ stabilized factor	$\begin{array}{cc} >H 206 & 2 A U X \\ \text { KCD } & 100 \\ \hline \end{array}$	0-255	
264	$3^{\text {rd }}$ stabilized factor	>H306 3AUX KCD 100	0-255	(NOTE 1)
265	$1^{\text {st }}$ motor constant R1	$\begin{array}{rr} >\text { H020 } & \text { AUX } \\ \text { R1 } & 00.000 \mathrm{ohm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
266	$\begin{array}{\|l} \hline 2^{\text {nd d }} \\ \mathrm{R} 1 \end{array}$	$>\mathrm{H} 220$ 2 AUX R 1 00.000 ohm	0.000-65.535(ohm)	(NOTE 1)
267	$1^{\text {st }}$ motor constant R2	$\begin{array}{cr} \hline>\mathrm{H} 021 & \text { AUX } \\ \text { R2 } & 00.000 \mathrm{ohm} \\ \hline \end{array}$	0.000-65.535(ohm)	(NOTE 1)
268	$2^{\text {nd }}$ motor constant R2	$\begin{array}{lr} >\mathrm{H} 221 & 2 \mathrm{AUX} \\ \mathrm{R} 2 & 00.000 \mathrm{ohm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
269	$1^{\text {st }}$ motor constant L	$\begin{array}{cr} >\mathrm{H} 022 & \mathrm{AUX} \\ \mathrm{~L} \quad 000.00 \mathrm{mH} \end{array}$	0.00-655.35(mH)	(NOTE 1)
270	$2^{\text {nd }}$ motor constant L	$\begin{array}{lr} >H 222 & 2 \mathrm{AUX} \\ \mathrm{~L} & 000.00 \mathrm{mH} \end{array}$	0.00-655.35(mH)	(NOTE 1)
271	$1^{\text {st }}$ motor constant 10	$\begin{array}{lr} >\mathrm{H} 023 & \mathrm{AUX} \\ 10 & 000.00 \mathrm{~A} \\ \hline \end{array}$	0.00-655.35(A)	(NOTE 1)
272	$2^{\text {nd }}$ motor constant 10	$\begin{array}{lr} \hline>\mathrm{H} 223 & 2 \mathrm{AUX} \\ 10 & 000.00 \mathrm{~A} \end{array}$	0.00-655.35(A)	(NOTE 1)
273	$1^{\text {st }}$ motor constant J	$\begin{array}{cc} >\mathrm{H} 024 & \mathrm{AUX} \\ \mathrm{~J} & 000.000 \end{array}$	0.000-999.9000(kg m${ }^{2}$)	(NOTE 1)
274	2^{ND} motor constant J	$\begin{array}{cc} >H 224 & 2 \mathrm{AUX} \\ \mathrm{~J} & 000.000 \end{array}$	0.000-999.9000(kg m²)	(NOTE 1)
275	```1 st motor constant R1 (Autotuning data)```	$\begin{array}{cc} \text { >H030 AUX } \\ \text { A-R1 } & 00.000 \mathrm{hm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
276	$2^{\text {nd }}$ motor constant R1 (Autotuning data)	$\begin{array}{cr} >H 230 & 2 \mathrm{AUX} \\ \text { A-R1 } & 00.000 \mathrm{ohm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
277	$1^{\text {st }}$ motor constant R2 data) (Autotuning	$\begin{array}{cc} \text { >H031 AUX } \\ \text { A-R2 } & 00.000 \mathrm{hm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
278	$2^{\text {nd }}$ motor constant R2 (Autotuning data)	$\begin{array}{cr} >H 231 & 2 \mathrm{AUX} \\ \text { A-R2 } & 00.000 \mathrm{ohm} \end{array}$	0.000-65.535(ohm)	(NOTE 1)
279	$1^{\text {st }}$ motor constant L (Autotuning data)	$\begin{array}{lr} \hline>\mathrm{H} 032 & \mathrm{AUX} \\ \text { A-L } & 000.00 \mathrm{mH} \\ \hline \end{array}$	0.00-655.35(mH)	(NOTE 1)
280	2^{ND} motor constant L (Autotuning data)	$\begin{array}{lr} >\mathrm{H} 232 & 2 \mathrm{AUX} \\ \mathrm{~A}-\mathrm{L} & 000.00 \mathrm{mH} \\ \hline \end{array}$	0.00-655.35(mH)	(NOTE 1)
281	$1^{\text {st }}$ motor constant IO(Autotuing data)	$>\mathrm{H} 033$ AUX A-IO 000.00 A	0.00-655.35(A)	(NOTE 1)
282	$2^{\text {nd }}$ motor constant IO(Autotuing data)	$\begin{array}{lr} >\mathrm{H} 233 & 2 \mathrm{AUX} \\ \mathrm{~A}-10 & 000.00 \mathrm{~A} \\ \hline \end{array}$	0.00-655.35(A)	(NOTE 1)

283	$1^{\text {st }}$ motor constant J(Autotuing data)	$\begin{aligned} & >\mathrm{H} 034 \\ & \text { A-J } \end{aligned}$	$\begin{array}{r} \text { AUX } \\ 0000.00 \end{array}$	0.000-999.9000(kg m²)	(NOTE 1)
284	$2^{\text {nd }}$ motor constant J (Autotuing data)	$\begin{aligned} & >\mathrm{H} 234 \\ & \text { A-J } \end{aligned}$	$\begin{array}{r} \text { 2AUX } \\ 0000.00 \end{array}$	0.000-999.9000(kg m${ }^{2}$)	(NOTE 1)
285	$1^{\text {st }} \quad$ Pl-control propor- tion gain setting	$\begin{aligned} & \text { >HO50 } \\ & \text { KSP } \end{aligned}$	$\begin{array}{r} \text { AUX } \\ 0100.0 \% \end{array}$	0.0-1000.0(\%)	(NOTE 1)
286	$2^{\text {nd }} \quad$ PI-control propor- tion gain setting	$\begin{aligned} & >\mathrm{H} 250 \\ & \text { KSP } \end{aligned}$	$\begin{array}{r} \text { 2AUX } \\ 0100.0 \% \end{array}$	0.0-1000.0(\%)	(NOTE 1)
287	$1^{\text {st }} \quad$ PI-control integra- tion gain setting	$\begin{aligned} & \text { >H051 } \\ & \text { KSI } \end{aligned}$	$\begin{array}{r} \text { AUX } \\ 0100.0 \% \end{array}$	0.0-1000.0(\%)	(NOTE 1)

(NOTE 1) SJ300 series only .

No.	Function name	Display	Data range
288	$2^{\text {nd }} \mathrm{PI}$-control integration gain setting	$\begin{array}{lr} >H 251 & 2 \text { AUX } \\ \text { KSI } & 0100.0 \% \end{array}$	0.0-1000.0(\%) (NOTE 1)
289	$1^{\text {st }} \mathrm{P}$-control proportion gain setting	$>H 052$ AUX KSPP 01.00	0.00-10.00 (NOTE 1)
290	$2^{\text {nd }} \mathrm{P}$-control proportion gain setting	>H252 2AUX KSPP 01.00	0.00-10.00 (NOTE 1)
291	$1^{\text {st }} \mathrm{OHz}-\mathrm{SLV}$ limiter setting	>H060 AUX OSLV-LMT 100%	$0-100$ (NOTE 1)
292	$2^{\text {nd }} \mathrm{OHz}-\mathrm{SLV}$ limiter setting	$\begin{array}{cc} >H 260 & 2 \text { AUX } \\ \text { OSLV-LMT } & 100 \% \\ \hline \end{array}$	$0-100$ (NOTE 1)
293	PI-control proportion Gain for switching	$\begin{array}{cc} >H 070 & \text { AUX } \\ \text { CH-KSP } & 0100.0 \% \end{array}$	0.0-1000.0(\%) (NOTE 1)
294	PI-control integration Gain for switching	$>H 071$ AUX CH-KSI 0100.0%	0.0-1000.0(\%) (NOTE 1)
295	P-control proportion Gain for switching	$>H 072$ AUX CH-KSPP 01.00	0.00-10.00 (NOTE 1)
296	Option 1 operation selection on error	>P001 OPTION1 SELECT TRP	TRP / RUN
297	Option 2 operation selection on error	>P002 OPTION2 SELECT TRP	TRP / RUN
298	Feed-back option selection	>P010 FEEDBACK SELECT OFF	OFF(invalid) / ON(Valid) (NOTE 1)
299	Encoder pulse number setting	>P011 FEEDBACK ENC-P 01024pls	128-65000 (Pulse) (NOTE 1)
300	Control mode selection	>P012 FEEDBACK CONTROL ASR	ASR(ASR mode) / APR(APR mode) (NOTE 1)
301	Pulse train input mode selection	$>P 013$ FEEDBACK PULSE MD0	MD0(Mode 0)/MD1(Mode 1)/MD2(Mode 2) (NOTE 1)
302	Orientation stop position setting	$\begin{array}{cc} \hline \text { >P014 } & \text { FEEDBACK } \\ \text { POS } & 00000 \mathrm{pls} \end{array}$	0-4095 (Pulse) (NOTE 1)
303	Orientation speed setting	$>P 015$ FEEDBACK FC 005.00 Hz	0.00-120.00(Hz) (NOTE 1)
304	Orientation direction selection	$>P 016$ FEEDBACK TURN FW	FW(Forward) / RV(Reverse) (NOTE 1)

Chapter 10 LCD display and operating for SJ300/L300P series

305	Orientation completion range setting	$>P 017$ FEEDBACK L 00005 pls	0-10000 (pulse)	(NOTE 1)
306	Orientation completion delay time setting	>P018 FEEDBACK TW 000.00 s	0.00-9.99(s)	(NOTE 1)
307	Electronic gear position selection	$>P 019$ FEEDBACK EGRP FB	FB(Feed back) / REF(Reference)	(NOTE 1)
308	Electronic gear numerator of ratio setting	PP020 FEEDBACK EGR-N 0001	0-9999	(NOTE 1)
309	Electornic gear denominator of ratio setting	$\begin{array}{cc}>P 021 & \text { EEDBACK } \\ \text { EGR-D } & 0001\end{array}$	0-9999	(NOTE 1)
310	Position control feed-forward gain setting	$\begin{array}{cc}>P 022 & \text { FEEDBACK } \\ \text { FFWG } 000.00\end{array}$	0.00-655.35	(NOTE 1)
311	Position control loop gain setting	$\begin{array}{cc} \hline \text { >P023 } & \text { FEEDBACK } \\ \mathrm{G} & 000.50 \\ \hline \end{array}$	0.00-100.00	(NOTE 1)

(NOTE 1) SJ300 series only .
(15/15)

No.	Function name	Display	Data range
312	Compensation of secondary resistor selection	>P025 FEEDBACK R2-ADJ OFF	OFF(Invalid) / ON(Valid) (NOTE 1)
313	Over-speed detect level setting	>P026 FEEDBACK OSPD 135.0%	0.0-150.0(\%) (NOTE 1)
314	Speed-error over detect level setting	$>P 027$ FEEDBACK NER 7.5 Hz	0.00-120.00(Hz) (NOTE 1)
315	Digtal input option input mode selection (Acc/Dec)	$\begin{aligned} & >P 031 \quad \text { ACC/DEC } \\ & \text { SELECT REM } \end{aligned}$	REM(operator) / OP1 (option1) / OP2(option2)
316	Stop position setting for orientation input mode selection	$>P 032$ P-SET SELECT REM	REM(operator) / OP1(option1) / OP2(option2) (NOTE 1)
317	User1 selection	$\begin{array}{cc} >\text { U001 } & \text { USER } \\ 1 & \text { __no } \\ \hline \end{array}$	no / d001-P032 (NOTE 2)
318	User2 selection	$>$ U002 USER 2 no	no / d001-P032 (NOTE 2)
319	User3 selection	$>$ U003 USER 3 no	no / d001-P032 (NOTE 2)
320	User4 selection	$>$ U004 USER 4 no no	no / d001-P032 (NOTE 2)
321	User5 selection	$>$ U005 USER 5 no	no / d001-P032 (NOTE 2)
322	User6 selection	$>$ U006 USER 6 no	no / d001-P032 (NOTE 2)
323	User7 selection	$>$ OU07 USER 7 no	no / d001-P032 (NOTE 2)
324	User8 selection	$>$ U008 USER 8 no	no / d001-P032 (NOTE 2)
325	User9 selection	$>$ U009 USER 9 no	no / d001-P032 (NOTE 2)
326	User10 selection	$>$ U010 USER 10 no	no / d001-P032 (NOTE 2)

Chapter 10 LCD display and operating for SJ300/L300P series

327	User11 selection	$>$ U011 11	USER no	no / d001-P032	(NOTE 2)
328	User12 selection	$>$ U012 12	USER no	no / d001-P032	(NOTE 2)

(NOTE 1) SJ300 series only .
(NOTE 2) L300P series : no / d001 - P031

10.5 Diagnosis

(1) Inverter error message

Name	Description		Display of remote operator ERR1***
Over-current protection	Motor is restricted and decelerates rapidly, excessive current is drawn through the inverter and there is a risk of damage. Current protection circuit operates and the inverter output is switched off.	At constant Speed	OC. Drive
		On deceleration speed	OC. Decel
		On acceleration speed	OC. Accel
		Other	Over. C
Overload protection (NOTE1)	When the Inverter detects an overload in the motor, the internal electronic thermal overload operates and the inverter output is switched off.		Over. L
Braking resistor overload protection	When BRD exceeds the usage ratio of the regenerative braking resistor, the over-voltage circuit operates and the inverter output is switched off.		OL. BRD
Over-voltage protection	When regenerative energy from the motor exceeds the maximum level, the over-voltage circuit operates and the inverter output is switched off.		Over. V
EEPROM error (NOTE2)	When EEPROM in the inverter is subject to radiated noise or unusual temperature rises, the inverter output is switched off.		EEPROM
Under-voltage	When the incoming voltage of inverter is low, the control circuit can't operate correctly. The under-voltage circuit operates and the inverter output is switched off.		Under. V
CT error	When an abnormality occurs to a CT (current detector) in the inverter, the inverter output is switched off.		CT
CPU error	When a mistaken action causes an error to the in built CPU, the inverter output is switched off.		CPU
External trip	When a signal is given to the EXT intelligent input terminal, the inverter output is switched off. (on external trip function select)		EXTERNAL
USP error	This is the error displayed when the inverter power is restored while still in the RUN mode. (Valid when the USP function is selected)		USP
Ground fault protection	When power is turned ON, this detects ground faults between the inverter output and the motor.		GND. FIt
Incoming over-voltage protection	When the incoming voltage is higher than the specification value, this detects it for 60 seconds then the over-voltage circuit operates and the inverter output is switched off.		OV. SRC

NOTE1: After a trip occurs and 10 seconds pass, restart with reset operation.
NOTE2: When EEPROM error occurs, confirm the setting data again.

Name	Description	Display of remote operator ERR1***
Temporary power loss protection	When an instantaneous power failure occurs for more than 15 ms , the inverter output is switched off. Once the instantaneous power failure wait time has elapsed and the power has not been restored it is regarded as a normal power failure. However, when the operation command is still ON with restart selection the inverter will restart. So please be careful of this.	Inst. P-F
Abnormal temperature	When main circuit temperature raises by stopping of cooling fan, the inverter output is switched off.	OH. FIN
Gate Allay error	Communication error between CPU and gate allay indicate	GA
Open-phase protection	When an open-phase on the input supply occurs the inverter output is switched off.	PH. Fail
IGBT error	When an instantaneous over-current is detected on the output the inverter output is switched off to protect the main devices.	IGBT
Thermistor error	When the Inverter detects a high resistance on the thermistor input from the motor the inverter output is switched off.	TH
Abnormal brake	When inverter cannot detect switching of the brake(ON/FF) after releasing the brake ,and for waiting for signal condition(b124) (When the braking control selection(b120) is enable.)	BRAKE
Option 1 error 0-9	These indicate the error of option 1. You can realize the details each instruction manual.	OP1- OP1-9
Option 2 error 0-9	These indicate the error of option 2. You can realize the details by each instruction manual.	OP2- OP2-9
During under-voltage waiting	When the incoming voltage of the inverter has dropped, the inverter output is switched off and the inverter waits.	UV. WAIT

(2) Inverter warning massages

Warning display condition	Remote operator (6 languages available)
Maximum frequency setting $<$ Frequency upper limit setting $<$ Frequency lower limit setting $<$ Basic frequency setting $<$ Multi-speed frequency setting(0) $<$ Multi-speed frequency setting(1-15) $<$ Orientation speed setting	$\begin{aligned} & \text { Fmax < Lim-H } \\ & \text { Fmax < Lim-L } \\ & \text { Fmax < F-Base } \\ & \text { Fmax < FS } \\ & \text { Fmax }<\text { SPEED } \\ & \text { Fmax < ORT } \end{aligned}$
$2^{\text {nd }}$ Maximum frequency setting $<2^{\text {nd }}$ Frequency upper limit setting $<2^{\text {nd }}$ Frequency lower limit setting $<2^{\text {nd }}$ Basic frequency setting $<2^{\text {nd }}$ Multi-speed frequency setting (0) $<2^{\text {nd }}$ Multi-speed frequency setting $<(1-15)$ $<$ Orientation speed setting	$\begin{aligned} & 2 \text { Fmax < 2Lim-H } \\ & 2 \text { Fmax < 2Lim-L } \\ & 2 \text { Fmax < 2F-Base } \\ & 2 \text { Fmax < 2FS } \\ & 2 \text { Fmax }<\text { SPEED } \\ & 2 \text { Fmax }<\text { ORT } \end{aligned}$
$3^{\text {rd }}$ Maximum frequency setting $<3^{\text {rd }}$ Basic frequency setting $<3^{\text {rd }}$ Multi-speed frequency setting (0) $<$ Multi-speed frequency setting(1-15) $<$ Orientation speed setting	$\begin{aligned} & 3 \text { 3max < 3F-Base } \\ & 3 \text { Fmax < 3FS } \\ & 3 \text { 3max < SPEED } \\ & 3 \text { Fmax < ORT } \end{aligned}$
Frequency upper limit setting $<$ Frequency lower limit setting $<$ Multi-speed frequency setting (0) $<$ Multi-speed frequency setting (1-15) $<$ Orientation speed setting	$\begin{aligned} & \text { Lim-H }<\text { Lim-L } \\ & \text { Lim-H }<\text { FS } \\ & \text { Lim-H }<\text { SPEED } \\ & \text { Lim-H }<\text { ORT } \end{aligned}$
$2^{\text {nd }}$ Frequency upper limit setting $<2^{\text {nd }}$ Frequency lower limit setting $<2^{\text {nd }}$ Multi-speed frequency setting (0) $<$ Multi-speed frequency setting (1-15) $<$ Orientation speed setting	$\begin{aligned} & 2 \text { Lim-H < 2Lim-L } \\ & 2 \text { Lim-H < 2FS } \\ & 2 \text { Lim-H < SPEED } \\ & 2 \text { Lim-H < ORT } \end{aligned}$
Frequency lower limit setting $>$ Frequency upper limit setting $>$ Multi-speed frequency setting (0)	$\begin{aligned} & \text { Lim-L > Lim-H } \\ & \text { Lim-L > FS } \end{aligned}$
$\begin{aligned} 2^{\text {nd }} \text { Frequency lower limit setting } & >2^{\text {nd }} \text { Frequency upper limit setting } \\ & >2^{\text {nd }} \text { Multi-speed frequency setting (0) } \end{aligned}$	$\begin{aligned} & \text { 2Lim-L > 2Lim-H } \\ & \text { 2Lim-L > FS } \end{aligned}$
Starting frequency adjustment $>$ Frequency lower limit setting $>2^{\text {nd }}$ Frequency lower limit setting $>$ Multi-speed frequency setting(0) $>2^{\text {nd }}$ Multi-speed frequency setting(0) $>3^{\text {rd }}$ Multi-speed frequency setting(0)	$\begin{aligned} & \text { Fmin }>\text { Lim-L } \\ & \text { Fmin }>2 \text { Lim-L } \\ & \text { Fmin }>\text { FS } \\ & \text { Fmin }>2 \text { FS } \\ & \text { Fmin }>3 F S \end{aligned}$

Chapter 10 LCD display and operating for SJ300/L300P series

	$>$ Multi-speed frequency setting(1-15)	Fmin > SPEED
	$>$ Jogging frequency setting	Fmin > JG
Jump frequency $n+-J u m p ~ w i d t h ~$ $(n=1,2,3)$	$<$ Multi-speed frequency setting(0)	Fjp <> FS
	$>$	
	$<2^{\text {nd }}$ Multi-speed frequency setting(0)	Fjp <> 2FS
	$>$	
	$<3^{\text {rd }}$ Multi-speed frequency setting(0)	Fjp <> 3FS
	$>$	
	$<$ Multi-speed frequency setting(1-15)	Fjp <> SPEED
	$>$	

Warning display condition		Remote operator (6 languages available)
Free V/F frequency setting 1	> Free V/F frequency setting 2 7	v/f-FREE
Free V/F frequency setting 2	> Free V/F frequency setting 3 7	v/f-FREE
Free V/F frequency setting 3	> Free V/F frequency setting 4 7	v/f-FREE
Free V/F frequency setting 4	> Free V/F frequency setting 5 7	v/f-FREE
Free V/F frequency setting 5	> Free V/F frequency setting 6 , 7	v/f-FREE
Free V/F frequency setting 6	> Free V/F frequency setting 7	v/f-FREE
Free electronic thermal Frequency setting 1	> Free electronic thermal	Eth-FRE
Frequency setting 1	Frequency setting 2,3	
Free electronic thermal Frequency setting2	> Free electronic thermal Frequency setting 3	Eth-FRE E

