HITACHI
 Inspire the Next

SJ-MB Modbus/RTU Communications Option Board Instruction Manual

- SJ300 Series
- L300P Series


```
NOTE: REFER ALSO TO SJ300 or L300P SERIES INSTRUCTION MANUAL
```

Manual Number: HAL1052 September 2007

After reading this manual,
keep it handy for future reference.

Hitachi America, Ltd.

NOTES:

Table of Contents

Table of Contents 3
Chapter 1 - General Description 5
Chapter 2 - Installation and Wiring 9
Chapter 3 - Configuration 13
Chapter 4 - Operation 15
Chapter 5 - Troubleshooting 17
Appendix - Parameter List 18
Index 33

NOTES:

Chapter 1 - General Description

The SJ-MB option board is a Modbus/RTU communication interface for the Hitachi SJ300 and L300P series of AC Variable Frequency Inverters. The board can be installed in either of the two available option slots in the inverter.

The SJ-MB uses the open MODBUS/RTU communication protocol. It utilizes a serial RS485 physical interface with a maximum 57600 Baud data rate. Even though the board uses the MODBUS/RTU protocol, this does not mean that all MODBUS services and functions are supported. Detailed description of the available functionality is provided in Chapter 4 of this manual. The board will act as a MODBUS/RTU slave that can be read from and written to over a serial RS485 network from a MODBUS/RTU master device. It will not initiate communication with other devices on the network. It will only respond to requests from a master device. The SJ-MB will allow a user to control the operation of the inverter, monitor its operation, and modify parameters.

Before using this product, please read this manual and the relevant inverter manual, and be sure to follow all safety precautions noted therein. After unpacking the SJ-MB board, carefully inspect it for any defect or damage, and be sure all parts are present.

Carton Contents

(1) SJ-MB Modbus Communication Interface Board
(2) Screws to secure board to inverter case (M3 x 8mm)
(1) CD-ROM containing this manual (pdf)

WARRANTY

The warranty period under normal installation and handling conditions shall be eighteen (18) months from the date of purchase, or twelve (12) months from the date of installation, whichever occurs first. The warranty shall cover repair or replacement, at Hitachi's sole discretion, of the SJ-MB Option board.

Service in the following cases, even within the warranty period, shall be to the customers account:

1. Malfunction or damage caused by misuse, modification or unauthorized repair.
2. Malfunction or damage caused by mishandling, dropping, etc., after delivery.
3. Malfunction or damage caused by fire, earthquake, flood, lightning, abnormal input voltage, contamination, or other natural disasters.

If service is required for the product at your worksite, all expenses associated with field repair are the purchaser's responsibility. This warranty only covers service at Hitachi designated service facilities.

If making a warranty claims in reference to the above, please contact the distributor from whom you purchased the SJ-MB, and provide the model number, purchase date, installation date, and description of damage or missing components.

SAFETY PRECAUTIONS

HIGH VOLTAGE: This symbol indicates high voltage. It calls your attention to items or operations that could be dangerous to you and other persons operating this equipment. Read the message and follow the instructions carefully.

WARNING: Indicates a potentially hazardous situation that, if not avoided, can result in serious injury or death.

CAUTION: Indicates a potentially hazardous situation that, if not avoided, can result in minor to moderate injury, or serious damage to the product. The situation described in the CAUTION may, if not avoided, lead to serious results. Important safety measures are described in CAUTION (as well as WARNING), so be sure to observe them.

HIGH VOLTAGE: Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there may be exposed components with housings or protrusions at or above line potential. Extreme care should be taken to protect against shock. Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power before checking controllers or performing maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electronic controllers or rotating machinery.
WARNING: This equipment should be installed, adjusted, and serviced by qualified electrical maintenance personnel familiar with the construction and operation of the equipment and the hazards involved. Failure to observe this precaution could result in bodily injury.

WARNING: HAZARD OF ELECTRICAL SHOCK. DISCONNECT INCOMING POWER BEFORE WORKING ON THIS CONTROL.

WARNING: Wait at least five (5) minutes after turning OFF the input power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.

WARNING: Do not install or remove the SJ-MB Modbus option board while the inverter is energized. Otherwise there is the danger of electric shock and/or injury due to unexpected inverter operation.

WARNING: Never modify the unit. Otherwise, there is a danger of electric shock and/or injury.

CAUTION: Be sure to secure the SJ-MB option board with the supplied mounting screws. Make sure all connections are made securely; otherwise there is danger of a loose connection and unpredictable operation.

CAUTION: Alarm connection may contain hazardous live voltage even when inverter is disconnected. When removing the front cover for maintenance or inspection, confirm that incoming power for alarm connection is completely disconnected.

CAUTION: Be sure not to touch the surface or terminals of the SJ-MB Modbus option board while the inverter is energized; otherwise there is the danger of electric shock.

CAUTION: The software lock modes described in the SJ300 inverter manual are NOT supported via the SJ-MB option board. This means that network commands can bypass any software lock settings configured via the inverter keypad. It is therefore incumbent on the user to make sure no safety lockouts are violated through network commands.

CAUTION: When configuring parameters with the standard keypad, the inverter checks for and inhibits invalid parameter combinations when the STR key is pressed. The SJ-MB bypasses this check, so it is incumbent on the user to make sure invalid configuration parameters or combinations are not sent through network commands. Otherwise undesirable inverter behavior may occur.

CAUTION: Certain parameter data ranges vary depending on model and capacity. The SJ-MB does NOT check to make sure these data are within range. Thus it is incumbent on the user to make sure data for these parameters is within range for the specific model and rating. These parameters are noted in the parameter tables in the Appendix. Otherwise undesirable inverter behavior may occur.

INVERTER COMPATIBILITY

The inverter firmware revision number is embedded within the inverter Manufacturing Number, which can be found on the product nameplate. The SJ-MB Modbus Interface option board is compatible only with SJ300 and L300P series inverters with Revision Numbers HIGHER than those shown below.

XX8KT XXXXX XXXXX - for SJ300-xxxXFU 0.4 kW (0.5 hp) to 55 kW (75 hp), or L300P-xxxXFU or L300P-xxxXBRM 1.5 kW (2 hp) to 75 kW (100 hp)

XXEMT XXXXX XXXXX - for SJ300-xxxXFU 75kW (100 hp) to 150 kW (200 hp), or L300P-xxxXFU or L300P-xxxXBRM 90 kW (125 hp) to 132 kW (175 hp)

Note: All inverters in the model number series L300P-xxxXFU2 are compatible with the SJ-MB, regardless of revision number. All SJ300 and L300P models manufactured in 2004 or later are compatible as well.

NOTES:

Chapter 2 - Installation and Wiring

Orientation to Product Features

Figure 2-1 below shows the physical layout of the SJ-MB Modbus option board. In particular, note the location of status LEDs and DIP-switches.

Figure 2-1
SJ-MB Layout

Installing the Option Board

Power down the inverter and wait at least five minutes before moving to the next step. Open and remove the lower terminal cover. Confirm that the red CHARGE LED is extinguished and that the DC bus is fully discharged before proceeding further, otherwise there is the danger of electric shock. Then remove keypad from the inverter. You can now remove the upper front cover to expose the two option ports inside.

Figure 2-2 on the next page shows how to install the option board to option port 1 or 2 of the inverter. There are four holes on the corners of the option board. Align the board with the port connector in the proper orientation (to the left, when facing the inverter as show). Then align the top two holes with the two screw holes, and the bottom two holes with the two guide posts. Insert the board fully into the connector. Secure the board with the two M3 screws supplied.

Figure 2-2
Installation of SJ-MB

User Interface

The SJ-MB has six LEDs to convey module status and activity.
Four LEDs next to the Modbus port connector:

- STATUS (GREEN) - This LED will be ON whenever the SJ-MB is receiving proper power from the inverter and the self diagnostics have shown the board to be functioning normally.
- ERROR (RED) - This LED will be ON if the SJ-MB has failed due to a hardware watchdog timeout, or the Modbus communications has been absent for the software watchdog timeout period.
- MB TX - This LED is ON when the SJ-MB is transmitting Modbus data over the network.
- MB RX - This LED is ON when the SJ-MB is receiving Modbus data over the network.

Two LEDs near the right edge of the board:

- TXD - This LED indicates communication from the SJ-MB to the inverter through the option port.
- RXD - This LED indicates communication to the SJ-MB from the inverter through the option port.
(These two LEDs may appear blinking or may appear steady ON due to the high blink rate.)

NOTES:

Chapter 3 - Configuration

Configuration of the SJ-MB Board

Ensure that the SJ-MB is properly installed as described in Chapter 2.
There are two DIP-switch banks on the SJ-MB board (see Figure 2-1). The eight-position bank is not used; however ensure that all switches are in the OFF position.

On the two-position DIP-switch bank, the left switch (bit 1) of controls whether a termination resistor is connected across the D+ and D- data terminals. This switch should be in the OFF position, unless this SJ-MB board is the last device in the Modbus/RTU network. In this case, move this switch to the on position to provide proper network termination resistance. The right switch SHOULD NOT be used. It is for factory use only, and should be in the OFF position for normal operation.

Make sure that all wiring is secure in the inverter, and that the power connections are free and clear. Be sure to separate power wiring from control wiring. If they have to cross, be sure that they cross at a right angle to minimize the possibility of interference. Power up the inverter, and observe the LEDs on the SJ-MB board. The STATUS LED should be illuminated, and the RX and TX LEDs should blink when Modbus data is being passed. The red ERROR LED should NOT be illuminated. Also, the RXD and TXD LEDs should be blinking (may appear as though ON continuously, due to high blink rate). See Chapter 4 for detailed description of LED functions. If the LED conditions are not correct, proceed to Chapter 5 for Troubleshooting. If you power up the inverter before powering up the PC, an error code may appear. After powering up the PC and properly connecting the cable, you should be able to clear the error with the STOP/RESET key on the inverter keypad.

If the LEDs are correct, continue with the configuration.

Configuring Parameters that Control the SJ-MB

Using either the keypad, or the ProDrive Programming Software, you will need to configure the communication settings for the SJ-MB board. Refer to the following table.

Function Code	Name	Description	Run Mode Edit Lo Hi	Defaults			Setting for Modbus Control via SJ-MB
				$\begin{aligned} & -\mathrm{FE} \\ & \text { (EU) } \end{aligned}$	$\begin{aligned} & -\mathbf{F U} \\ & \text { (US) } \end{aligned}$	$\begin{gathered} \text {-FR } \\ (\mathrm{Jpn}) \end{gathered}$	
		Four options; select codes:					
C070	Data Command Method	02 Digital Operator 03 RS485 port 04 Expansion board 1 05 Expansion board 2	$\mathbf{x} \times$	02	02	02	02

C071	Comm. Speed Selection	Five options; select codes: 02 Test 032400 bps 044800 bps 059600 bps 0619200 bps	$\times \checkmark$	04	04	04	To Match Master Device
C072	Node Allocation	Set the desired address of the inverter on the Modbus/RTU network. Range is 1 to 32 .	$\times \sqrt{ }$	1	1	1	As required
C073	Comm. Data Length Selection	Two options, select codes: 07 7-bit data 08 8-bit data	$\times \checkmark$	7	7	7	To Match Master Device
C074	Comm. Parity Selection	Three options, select codes: 00 No parity 01 Even parity 02 Odd parity	$\times \sqrt{ }$	00	00	00	To Match Master Device
C075	Comm. Stop Bit Selection	Two options, select codes: 011 stop bit 022 stop bits	$\times \checkmark$	1	1	1	To Match Master Device
C078	Comm. Wait Time	Time the board waits after receiving a message before it transmits data. Range is 0.0 to 1000 ms	$\times \checkmark$	0.0	0.0	0.0	As required

Chapter 4 - Operation

Setting Up the Inverter for Modbus Network Operation

Once the SJ-MB board has been properly configured and connected to a network as described in Chapter 3, it is capable of reading data from and writing data to the inverter. However if it is desired to have either the RUN command and/or the speed reference come from the Ethernet master, you must change two inverter parameters as shown in the following table.

Function Code	Name	Description	Run Mode Edit Lo Hi	Defaults			Setting for Modbus Control
				$\begin{aligned} & \text {-FE } \\ & \text { (EU) } \end{aligned}$	$\begin{aligned} & -F \mathbf{F} \\ & \text { (US) } \end{aligned}$	$\begin{gathered} \text {-FR } \\ \text { (Jpn) } \end{gathered}$	
A001	Frequency Source Setting	Six options; select codes: 00 Keypad potentiometer 01Control terminal 02 Function F001 setting 03 RS485 serial command 04 Expansion board 1 05 Expansion board 2	$\mathbf{x} \times$	01	01	02	02
A002	Run command source setting	Five options; select codes: 01 Input terminal [FW] or [RV] (assignable) 02 Run key on keypad, or digital operator 03 RS485 serial command 04 Start/Stop, expansion card \#1 05 Start/Stop, expansion card \#2	$\mathbf{x} \times$	01	01	02	02

Supported MODBUS Functions

The SJ-MB is implemented with the MODBUS/RTU communication protocol. It supports the following MODBUS functions:

- 1 - MODBUS_READ_COILS (up to 32 at a time)
- 3 - MODBUS_READ_MULTIPLE_REGS (Up to 4 at a time)
- 5 - MODBUS_WRITE_COIL
- 6 - MODBUS_WRITE_SINGLE_REGISTER
- 8 - MODBUS_LOOPBACK_TEST
- 15 - MODBUS_FORCE_MULTIPLE_COILS (up to 32 at a time)
- 16 - MODBUS_WRITE_MULTIPLE_REGS (up to 4 at a time)

Additional MODBUS/RTU protocol details, including specifications, application information, implementation guides, and other resources are available from the web site www.modbus.org.

NOTES:

Chapter 5 - Troubleshooting

In general, the first step to troubleshooting should be to inspect the status LEDs on the SJ-MB board, in addition to the inverter operator/keypad display. These will give valuable clues to the nature of the problem.

In addition, the inverter operator/keypad will provide diagnostic information for certain types of errors. Error codes for the option boards will have the format of:
 to the right of the decimal point indicates the drive status at the time of trip, as follows:

| EXK. I |
| :--- | :--- | :--- | :--- | :--- | :--- |

The digit immediately to the left of the decimal point has the following meaning:

Code	Trip Name	Cause	Check	Remedy
EXO.K	Modbus Communication Error	Defective connection	Connectors (plugs \& jacks), cable	Replace or repair; press STOP/RESET on inverter keypad
		PC not powered up or not connected to inverter	That PC is powered on and connected	Press STOP/RESET on inverter keypad
		Network configuration error	Verify proper Modbus setup of SJ-MB and master device	Reconfigure incorrect settings.
EX9.K	Internal Communication Error (between SJ-MB and inverter)	Option board ajar or loose	Verify board is properly seated in connector	Remove and reseat board
		Board lockup	Check status LEDs	Press STOP/RESET key on inverter or cycle power
		Board defective	Check status LEDs	Replace SJ-MB
	Inverter Mismatch (blinking display as shown)	Inverter firmware version not compatible with SJ-MB option board	Inverter Manufacturing Number for version (see Page 7)	Replace Inverter with later version

NOTES:

Appendix - Parameter List

The following lists include the combined parameter sets of both the L300P series and SJ300 series of inverters. Therefore, all parameters listed are not available on both series. Please refer to the instruction manual for the inverter you have to determine the list of available parameters. Then you can find the parameter on these lists and determine proper addressing for Modbus/RTU.

Coil List

Coil No.	Item	R/W	Setting
0001h	Operation command	R/W	1: Run, 0: Stop (valid when A002 = 02)
0002h	Rotation direction command	R/W	1: Reverse, 0: Forward (valid when A002 = 02)
0003h	External trip (EXT)	R/W	1: Trip
0004h	Trip reset (RS)	R/W	1: Reset
0007h	Intelligent input terminal [1]	R/W	1: ON, 0: OFF (*1)
0008h	Intelligent input terminal [2]	R/W	1: ON, 0: OFF (*1)
0009h	Intelligent input terminal [3]	R/W	1: ON, 0: OFF (*1)
000Ah	Intelligent input terminal [4]	R/W	1: ON, 0: OFF (*1)
000Bh	Intelligent input terminal [5]	R/W	1: ON, 0: OFF (*1)
000Ch	Intelligent input terminal [6]	R/W	1: ON, 0: OFF (*1)
000Dh	Intelligent input terminal [7]	R/W	1: ON, 0: OFF (*1)
000Eh	Intelligent input terminal [8]	R/W	1: ON, 0: OFF (*1)
000Fh	Operation status	R	1: Run, 0: Stop (interlocked to "d003")
0010h	Rotation direction	R	1: Reverse rotation, 0: Forward rotation (interlocked to "d003")
0013h	RUN (running)	R	1: Tripped, 0: Normal
0014h	FA1 (constant-speed reached)	R	1: ON, 0: OFF
0015h	FA2 (set frequency overreached)	R	1: ON, 0: OFF
0016h	OL (overload notice advance signal (1))	R	1: ON, 0: OFF
0017h	OD (output deviation for PID control)	R	1: ON, 0: OFF
0018h	AL (alarm signal)	R	1: ON, 0: OFF
0019h	FA3 (set frequency reached)	R	1: ON, 0: OFF
001Ah	OTQ (over-torque)	R	1: ON, 0: OFF
001Bh	IP (instantaneous power failure)	R	1: ON, 0: OFF
001Ch	UV (under voltage)	R	1: ON, 0: OFF
001Dh	TRQ (torque limited)	R	1: ON, 0: OFF
001Eh	RNT (operation time over)	R	1: ON, 0: OFF
001Fh	ONT (plug-in time over)	R	1: ON, 0: OFF
0020h	THM (thermal alarm signal)	R	1: ON, 0: OFF
0026h	BRK (brake release)	R	1: ON, 0: OFF
0027h	BER (brake error)	R	1: ON, 0: OFF
0028h	ZS (0 Hz detection signal)	R	1: ON, 0: OFF
0029h	DSE (speed deviation maximum)	R	1: ON, 0: OFF
002Ah	POK (positioning completed)	R	1: ON, 0: OFF

002Bh	FA4 (set frequency overreached 2)	R	1: ON, 0: OFF
002Ch	FA5 (set frequency reached 2)	R	1: ON, 0: OFF
002Dh	OL2 (overload notice advance signal (2))	R	1: ON, 0: OFF
0032h	FBV (PID feedback comparison)	R	1: ON, 0: OFF
0033h	NDC (communication line disconnection)	R	1: ON, 0: OFF
0034h	LOG1 (logical operation result 1)	R	1: ON, 0: OFF
0035h	LOG2 (logical operation result 2)	R	1: ON, 0: OFF
0036h	LOG3 (logical operation result 3)	R	1: ON, 0: OFF
0037h	LOG4 (logical operation result 4)	R	1: ON, 0: OFF
0038h	LOG5 (logical operation result 5)	R	1: ON, 0: OFF
0039h	LOG6 (logical operation result 6)	R	1: ON, 0: OFF
003Ah	WAC (capacitor life warning)	R	1: ON, 0: OFF
003Bh	WAF (cooling-fan speed drop)	R	1: ON, 0: OFF
003Ch	FR (starting contact signal)	R	1: ON, 0: OFF
003Dh	OHF (heat sink overheat warning)	R	1: ON, 0: OFF
003Eh	LOC (low-current indication signal)	R	1: ON, 0: OFF
003Fh	M01 (general output 1)	R	1: ON, 0: OFF
0040h	M02 (general output 2)	R	1: ON, 0: OFF
0041h	M03 (general output 3)	R	1: ON, 0: OFF
0042h	M04 (general output 4)	R	1: ON, 0: OFF
0043h	M05 (general output 5)	R	1: ON, 0: OFF
0044h	M06 (general output 6)	R	1: ON, 0: OFF
0046h	FWR (forward rotation)	R	1: ON, 0: OFF
0047h	RVR (reverse rotation)	R	1: ON, 0: OFF
0048h	MJA (major failure)	R	1: ON, 0: OFF
0049h	Data writing in progress	R	1: Writing in progress, 0: Normal status
004Ah	CRC error	R	1: Error detected, 0: No error (*2)
004Bh	Overrun	R	1: Error detected, 0: No error (*2)
004Ch	Framing error	R	1: Error detected, 0: No error (*2)
004Dh	Parity error	R	1: Error detected, 0: No error (*2)
004Eh	Sum check error	R	1: Error detected, 0: No error (*2)

*1 Normally, this coil is turned on when the corresponding intelligent input terminal on the control circuit terminal block is turned on or the coil itself is set to on. In this regard, the operation of the intelligent input terminal has priority over the operation of the coil. If disconnection of the communication line has disabled the master system from turning off the coil, turn the corresponding intelligent input terminal on the control circuit block on and off. This operation turns off the coil.
*2 Communication error data is retained until an error reset command is input (can be reset during inverter operation.)

Register List

Dec	Hex	Description	Inverter Parameter
1	0×1	Set frequency (Hz) / PID Setpoint (\%) [MSW]	F1
2	0×2	Set frequency (Hz) / PID Setpoint (\%) [LSW]	F1
3	0×3	Status of Inverter [BYTE 3]	R1
4	0×4	Status of Inverter [BYTE 2]	R1
5	0x5	Status of Inverter [BYTE 1]	R1
17	0×11	Accumulated number of Trip(error)	D80
18	0×12	Factor and Status of Trip1 [MSW]	D81
19	0×13	Factor and Status of Trip1 [LSW]	D81
20	0×14	Frequency of Trip1 [MSW]	
21	0×15	Frequency of Trip1 [LSW]	
22	0×16	Output current of Trip1	
23	0×17	PN voltage (DC voltage) of Trip1	
24	0×18	Accumulated time during running of Trip1 [MSW]	
25	0×19	Accumulated time during running of Trip1 [LSW]	
26	$0 \times 1 \mathrm{~A}$	Accumulated time during power ON of Trip1 [MSW]	
27	$0 \times 1 \mathrm{~B}$	Accumulated time during power ON of Trip1 [LSW]	
28	$0 \times 1 \mathrm{C}$	Factor and Status of Trip2 [MSW]	D82
29	$0 \times 1 \mathrm{D}$	Factor and Status of Trip2 [LSW]	D82
30	$0 \times 1 \mathrm{E}$	Frequency of Trip2 [MSW]	
31	0x1F	Frequency of Trip2 [LSW]	
32	0x20	Output current of Trip2	
33	0×21	PN voltage (DC voltage) of Trip2	
34	0×22	Accumulated time during running of Trip2 [MSW]	
35	0×23	Accumulated time during running of Trip2 [LSW]	
36	0x24	Accumulated time during power ON of Trip2 [MSW]	
37	0x25	Accumulated time during power ON of Trip2 [LSW]	
38	0x26	Factor and Status of Trip3 [MSW]	D83
39	0x27	Factor and Status of Trip3 [LSW]	D83
40	0x28	Frequency of Trip3 [MSW]	
41	0x29	Frequency of Trip3 [LSW]	
42	0x2A	Output current of Trip3	
43	0x2B	PN voltage (DC voltage) of Trip3	
44	0x2C	Accumulated time during running of Trip3 [MSW]	
45	0x2D	Accumulated time during running of Trip3 [LSW]	
46	$0 \times 2 \mathrm{E}$	Accumulated time during power ON of Trip3 [MSW]	
47	0x2F	Accumulated time during power ON of Trip3 [LSW]	
48	0x30	Factor and Status of Trip4 [MSW]	D84
49	0x31	Factor and Status of Trip4 [LSW]	D84
50	0x32	Frequency of Trip4 [MSW]	
51	0×33	Frequency of Trip4 [LSW]	
52	0×34	Output current of Trip4	
53	0×35	PN voltage (DC voltage) of Trip4	
54	0×36	Accumulated time during running of Trip4 [MSW]	
55	0×37	Accumulated time during running of Trip4 [LSW]	
56	0x38	Accumulated time during power ON of Trip4 [MSW]	

4134 0x1026 DC Voltage D102
4135 0×1027 On time of BRD running D103
4136 0×1028 Used rate of electronics thermal protection D104
4355 0x1103 1st Acceleration time 1 [MSW] F2
4356 0x1104 1st Acceleration time 1 [LSW] F2
4357 0x1105 1st Deceleration time 1 [MSW] F3
4358 0×1106 1st Deceleration time 1 [LSW] F3
4359 0×1107 Selection of running direction for DIG-OPE F4
4609 0×1201 Selection of frequency command destination A1
4610 0x1202 Selection of running command destination A2
46110×1203 1st Base frequency A3
46120×1204 1st Maximum frequency A4
4613 0x1205 Selection of AT function A5
4614 0x1206 Selection of O2 terminal function A6
4619 0x120B Start frequency of .O. terminal [MSW] A11
4620 0x120C Start frequency of .O. terminal [LSW] A11
4621 $0 \times 120 \mathrm{D}$ End frequency of .O. terminal [MSW] A12
4622 0x120E End frequency of .O. terminal [LSW] A12
4623 $0 \times 120 \mathrm{~F}$ Starting rate of O terminal A13
4624 0×1210 End rate of O terminal A14
4625 0x1211 Selection of starting function of O terminal A15
4626 0×1212 Sampling number of fetching data from .O. A16
4629 0×1215 Selection of Multispeed method A19
4630 0×1216 1st setting Multispeed frequency 0 [MSW] A20
4631 0×1217 1st setting Multispeed frequency 0 [LSW] A20
4632 0x1218 Multispeed frequency 1 [MSW] A21
4633 0×1219 Multispeed frequency 1 [LSW] A21
4634 0x121A Multispeed frequency 2 [MSW] A22
4635 0x121B Multispeed frequency 2 [LSW] A22
4636 0x121C Multispeed frequency 3 [MSW] A23
4637 0x121D Multispeed frequency 3 [LSW] A23
4638 0x121E Multispeed frequency 4 [MSW] A24
4639 0x121F Multispeed frequency 4 [LSW] A24
4640 0x1220 Multispeed frequency 5 [MSW] A25
4641 0×1221 Multispeed frequency 5 [LSW] A25
4642 0×1222 Multispeed frequency 6 [MSW] A26
4643 0x1223 Multispeed frequency 6 [LSW] A26
4644 0x1224 Multispeed frequency 7 [MSW] A27
4645 0x1225 Multispeed frequency 7 [LSW] A27
4646 0×1226 Multispeed frequency 8 [MSW] A28
4647 0x1227 Multispeed frequency 8 [LSW] A28
4648 0×1228 Multispeed frequency 9 [MSW] A29
4649 0x1229 Multispeed frequency 9 [LSW] A29
4650 0x122A Multispeed frequency 10 [MSW] A30
4651 0x122B Multispeed frequency 10 [LSW] A30
4652 0x122C Multispeed frequency 11 [MSW] A31
4653 0x122D Multispeed frequency 11 [LSW] A31
4654 0x122E Multispeed frequency 12 [MSW] A32
4655 0x122F Multispeed frequency 12 [LSW] A32
4656 0x1230 Multispeed frequency 13 [MSW] A33
4657 0×1231 Multispeed frequency 13 [LSW] A33
4658 0x1232 Multispeed frequency 14 [MSW] A34
4659 0x1233 Multispeed frequency 14 [LSW] A34
4660 0x1234 Multispeed frequency 15 [MSW] A35
0×1235 Multispeed frequency 15 [LSW]
4665 0x1239 Selection of Jogging methodA38
4667 $0 \times 123 B$ Selection of 1st Torque boost Method A41
4668 0x123C Value of 1st Manual torque boost A42
4669 0x123D 1st Break point of manual torque boost A43
4670 0x123E Selection of 1st Control method A44
4671 0x123F Gain of output voltage A45
4677 0×1245 Selection of DC braking method A51
4678 0x1246 Frequency of DC braking start A52
4679 0×1247 Delay time of DC braking start A53
4680 0x1248 Power of DC braking(end of running) A54
4681 0x1249 Time of DC braking working A55
4682 0x124A Selection of edge/level action of DC braking trigger A56
4683 0x124B Power of DC braking (start of running) A57
4684 0x124C Time of DC braking working for beginning of inverter running A58
4685 0x124D Carrier frequency of DC braking A59
4687 0x124F 1st Upper limiter frequency [MSW] A61
4688 0x1250 1st Upper limiter frequency [LSW] A61
4689 0x1251 1st Lower limiter frequency [MSW] A62
4690 0x1252 1st Lower limiter frequency [LSW] A62
4691 0x1253 Jumping frequency 1 [MSW] A63
4692 0x1254 Jumping frequency 1 [LSW] A63
4693 0x1255 Width of jumping frequency 1 A64
4694 0x1256 Jumping frequency 2 [MSW] A65
4695 0x1257 Jumping frequency 2 [LSW] A65
4696 0x1258 Width of jumping frequency 2 A66
4697 0x1259 Jumping frequency 3 [MSW] A67
4698 0x125A Jumping frequency 3 [LSW] A67
4699 0x125B Width of jumping frequency 3 A68
4700 0x125C Frequency of stopping acceleration [MSW] A69
4701 0x125D Frequency of stopping acceleration [LSW] A69
4702 0x125E Time of stopping to accelerate A70
4703 0x125F Selection of PID control presence A71
4704 0x1260 Proportional(P) gain of PID control A72
4705 0x1261 Integrate (I) gain of PID control A73
4706 0x1262 Differential (D) gain of PID control A74
4707 0x1263 Scale of PID control A75
4708 0x1264 Selection of feedback destination for PID control A76
4713 0x1269 Selection of AVR function A81
4714 0x126A Selection of Motor voltage A82
4717 0x126D Selection of operation mode A85
4718 0x126E Response time of Energy saving function A86
4724 0×1274 1st Acceleration time 2 [MSW] A92

4725	0×1275	1st Acceleration time 2 [LSW]	A92
4726	0×1276	1st Deceleration time 2 [MSW]	A93
4727	0×1277	1st Deceleration time 2 [LSW]	A93
4728	0×1278	Selection of 1st 2-stage accel/decel Method	A94
4729	0×1279	1st Frequency of 2-stage acceleration [MSW]	A95
4730	$0 \times 127 \mathrm{~A}$	1st Frequency of 2-stage acceleration [LSW]	A95
4731	$0 \times 127 \mathrm{~B}$	1st Frequency of 2-stage deceleration [MSW]	A96
4732	$0 \times 127 \mathrm{C}$	1st Frequency of 2-stage deceleration [LSW]	A96
4733	$0 \times 127 \mathrm{D}$	Selection of acceleration pattern	A97
4734	$0 \times 127 \mathrm{E}$	Selection of deceleration pattern	A98
4737	0×1281	Start frequency of .OI. terminal [MSW]	A101
4738	0×1282	Start frequency of .OI. terminal [LSW]	A101
4739	0×1283	End frequency of .OI. terminal [MSW]	A102
4740	0×1284	End frequency of .OI. terminal [LSW]	A102
4741	0×1285	Starting rate of OI terminal	A103
4742	0×1286	End rate of OI terminal	A104
4743	0×1287	Selection of starting function of OI terminal	A105
4749	$0 \times 128 D$	Start frequency of .O2. terminal [MSW]	A111
4750	$0 \times 128 \mathrm{E}$	Start frequency of .O2. terminal [LSW]	A111
4751	$0 \times 128 F$	End frequency of .O2. terminal [MSW]	A112
4752	0×1290	End frequency of .O2. terminal [LSW]	A112
4753	0×1291	Starting rate of O2 terminal	A113
4754	0×1292	End rate of O2 terminal	A114
4773	$0 \times 12 A 5$	Curve constant of acceleration	A131
4774	0×12 A6	Curve constant of deceleration	A132

0×1302 Acceptable time for Instantaneous power failure B2
0×1303 Waiting time of retry B3
0×1304 Selection of method(action) at instantaneous power and under voltage B4
0×1305 Retry number of instantaneous power and under voltage B5
B6
4871 0×1307 Frequency of frequency matching [MSW] B7
0×1308 Frequency of frequency matching [LSW] 4872 B7
0x130D Level of 1st Electronic thermal protection 4877 B12
$0 \times 130 E$ Selection of characteristic of 1st electronic thermal protection 4878 B13
4880 0×1310 Free electronic thermal frequency 1 B15
4881 Free electronic thermal current 1 B16
4882 Free electronic thermal frequency 2 B17
4883 Free electronic thermal current 2 B18
4884 Free electronic thermal frequency 3 B19
4885 Free electronic thermal current 3 B20
4886 0x1316 Selection of method of overload restriction1 B21
4887 0×1317 Level of Overload restriction 1 B22
4888 0×1318 Constant value of Overload restriction 1 B23
48890×1319 Selection of method of overload restriction 2 B24
4890 0x131A Level of Overload restriction 2 B25
4891 0x131B Constant value of Overload restriction 2 B26
4896 0x1320 Selection of method of Software lock B31
4899 0×1323 Display time of warning [MSW] B34
4900 0x1324 Display time of warning [LSW] B34
4901 0×1325 Selection of running direction limitation B35
49020×1326 Selection of method of reducing voltage start B36
4903 0x1327 Selection of Display B37
4906 0x132A Selection of method of Torque limiter B40
4907 0x132B Level of torque limiter in forward and drive (1st quadrant) B41
4908 0x132C Level of torque limiter in reverse and regenerative (2nd quadrant) B42
4909 $0 \times 132 \mathrm{D}$ Level of torque limiter in reverse and drive (3rd quadrant) B43
4910 0x132E Level of torque limiter in forward and regenerative (4th quadrant) B44
4911 0x132F Selection of LAD stop by torque B45
4912 0×1330 Selection of preventive of reverse running B46
4916 0×1334 Selection of Non stop operation at instantaneous power failure B50
4917 0x1335 Starting voltage of Nonstop operation for Instantaneous power failure B51
Starting voltage of OV-LAD stop at Nonstop operation for Instantaneous power B524918$0 \times 1336$ failure
Deceleration time of Non-stop operation at Instantaneous power failure
4919 0x1337 [MSW] B53
Deceleration time of Non-stop operation at Instantaneous power failure49200x1338 [LSW]B53
Frequency width of starting deceleration at Nonstop operation for B544921 0x1339 Instantaneous power failure
4949 0x1355 Minimum frequency B82
4950 0x1356 Carrier frequency(PWM frequency B83
4951 0x1357 Selection of Initialization B84
4952 0x1358 Selection of initialized data B85
4953 0x1359 Coefficient of converting frequency B86
4954 0x135A Selection of .STOP. key function B87
4955 $0 \times 135 B$ Selection free run function B88
4957 0x135D Usage rate of BRD B90
4958 $0 \times 135 \mathrm{E}$ Selection of action at stop B91
4959 $0 \times 135 \mathrm{~F}$ Selection of action of cooling fan B92
4962 0×1362 Selection of BRD function B95
4963 0x1363 On level of BRD B96
4965 0×1365 Selection of Thermister function B98
4966 0×1366 Level of Thermister error B99
4967 0×1367 Free V/F control frequency 1 B100
4968 0×1368 Free V/F control voltage 1 B101
4969 0×1369 Free V/F control frequency 2 B102
4970 0x136A Free V/F control voltage 2 B103

4971
4972
4973
4974 0x136E
4975 0x136F
49760×1370
4977
4978
4979
4980

4987
4988
4989
4990
4991
4992
4993
0x136B

Free V/F control frequency 3
B104
$0 \times 136 \mathrm{C}$ Free V/F control voltage 3 B105
$0 \times 136 \mathrm{D}$ Free V/F control frequency 4 B106

Free V/F control voltage 4	B107

Free V/F control frequency 5 B108
Free V/F control voltage 5
0×1372 Free V/F control voltage 6 B111
0×1373 Free V/F control frequency $7 \quad$ B112
0×1374 Free V/F control voltage $7 \quad$ B113
0x137B Selection of external braking function
B120
0x137C Waiting time for establishing external braking condition B121
0x137D Waiting time for acceleration at external braking B122
$0 \times 137 E \quad$ Waiting time for stop at external braking B123
$0 \times 137 F$ Waiting time for confirmation signal at external braking B124
0×1380 Release frequency of external braking B125
$\begin{array}{lll}0 \times 1381 & \text { Release current of external braking } & \text { B126 }\end{array}$
0×1401 Selection of function in Intelligent input 1
C1
5122
0×1402
Selection of function in Intelligent input 2 C2
5123 0x1403 Selection of function in Intelligent input 3 C3
5124 0x1404 Selection of function in Intelligent input 4 C4
5125 0x1405 Selection of function in Intelligent input 5 C5
5126 0x1406 Selection of function in Intelligent input 6 C6
5127 0x1407 Selection of function in Intelligent input 7 C7
5128 0x1408 Selection of function in Intelligent input 8 C8
$51310 \times 140 B$ Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input 11
$51320 \times 140 \mathrm{C}$ Selection of $\mathrm{a}(\mathrm{NO})$ or $\mathrm{b}(\mathrm{NC})$ contact in Intelligent input $2 \quad \mathrm{C} 12$
$51330 \times 140 \mathrm{D}$ Selection of $\mathrm{a}(\mathrm{NO})$ or $\mathrm{b}(\mathrm{NC})$ contact in Intelligent input $3 \quad \mathrm{C} 13$
5134 0x140E Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input 4 C14
$51350 \times 140 F$ Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input $5 \quad$ C15
51360×1410 Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input $6 \quad$ C16
51370×1411 Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input 7 C17
$5138 \quad 0 \times 1412$ Selection of $a(N O)$ or $b(N C)$ contact in Intelligent input $8 \quad$ C18
5139 0x1413 Selection of $a(N O)$ or $b(N C)$ contact in FW input C19

5141
51420×1416
51430×1417
0×1418 Selection of function in Intelligent output 14
Selection of function in Intelligent output 14
C21

- C24

5145 0x1419 Selection of function in Intelligent output 15 C25
5146 0x141A Selection of function in Alarm relay output C26
5147 0x141B Selection of FM function C27
5148 0x141C Selection of AM function C28
5149 0x141D Selection of AMI function C29
5151 0x141F Selection of $a(N O)$ or $b(N C)$ contact in Intelligent output 11
51520×1420 Selection of $a(N O)$ or $b(N C)$ contact in Intelligent output 12 C32
51530×1421 Selection of $a(N O)$ or $b(N C)$ contact in Intelligent output $13 \quad$ C33$0 \times 1422$ Selection of $a(N O)$ or $b(N C)$ contact in Intelligent output 14C34
0×1423 Selection of $a(N O)$ or $b(N C)$ contact in Intelligent output 15 C35
0×1424 Selection of $a(N O)$ or $b(N C)$ contact in Alarm relay output C36
5160 0×1428 Selection of output mode of overload warning signal C40
5161 0×1429 Level1 of overload restriction warning C41
5162 0x142A Arrival frequency at acceleration1 [MSW] C42
5163 0x142B Arrival frequency at acceleration1 [LSW] C42
5164 0x142C Arrival frequency at deceleration1 [MSW] C43
5165 0x142D Arrival frequency at deceleration1 [LSW] C43
5166 0x142E Level over acceptable deviation of PID control C44
5167 0x142F Arrival frequency at acceleration2 [MSW] C45
5168 0×1430 Arrival frequency at acceleration2 [LSW] C45
5169 0x1431 Arrival frequency at deceleration2 [MSW] C46
5170 0×1432 Arrival frequency at deceleration2 [LSW] C460x143B Level of over torque in forward and drive (1st quadrant)C55
5180 0x143C Level of over torque in reverse and regenerative (2nd quadrant) C56
5181 0x143D Level of over torque in reverse and drive (3rd quadrant) C57
5182 $0 \times 143 E$ Level of over torque in forward and regenerative (4th quadrant) C58
5185 0x1441 Warning Level of electronic thermal protection C61
5186 0×1442 Selection of Alarm code C62
5187 0×1443 Level f detecting Zero speed C63
5195 0x144B Selection of communication speed for RS485 C71
5196 0x144C Selection of Inverter address for RS 485 C72
5197 0x144D Selection of bit length of data for RS485 C73
5198 0x144E Selection of parity (odd or even) for RS485 C74
5199 0x144F Selection of stop bit for RS485 C75
5202 0×1452 Waiting time of communication start C78
5205 0x1455 Adjustment of .O. terminal C81
5206 0x1456 Adjustment of .OI. terminal C82
5207 0x1457 Adjustment of .O2. terminal C83
5209 0x1459 Adjusting value of Thermister C85
5215 0x145F Selection of Debug mode method C91
5225 0x1469 Selection of UP/DOWN function C101
5226 0x146A Selection of RESET function C102
5227 0x146B Selection of frequency matching function at RESET C103
5229 0x146D Adjustment of FM(digital monitor) B81
5230 0x146E Adjustment of AM(analog monitor) B80
5231 0x146F Adjustment of AMI output C87
5233 0×1471 Adjustment of offset of AM C86
5234 0×1472 Adjustment of Offset of AMI output C88

0x1473 Level2 of overload restriction warning
5380 0×1504 Selection of Motor poles for 1st motor H4
5381 0×1505 1st Speed response gain [MSW] H5
5382 0×1506 1st Speed response gain [LSW] H5
5383 0×1507 1st Stability gain H6
5397 0×1515 1st Primary resistor R1 of motor [MSW] H2O
5398 0×1516 1st Primary resistor R1 of motor [LSW] H20
5399 0x1517 1st Secondary resistor R2 of motor [MSW] H21
5400 0x1518 1st Secondary resistor R2 of motor [LSW] H21
5401 1st Inductance L of motor [MSW] H22
5402 0x151A 1st Inductance L of motor [LSW] H22
5403 0x151B 1st No load current lo of motor [MSW] H23
5404 0x151C 1st No load current lo of motor [LSW] H23
5405 0x151D 1st Inertia J of motor [MSW] H24
5406 0x151E 1st Inertia J of motor [LSW] H24
5412 0×1524 1st Primary resistor R1 of motor (Auto) [MSW] H30
5413 0x1525 1st Primary resistor R1 of motor (Auto) [LSW] H30
5414 0x1526 1st Secondary resistor R2 of motor (Auto) [MSW] H31
5415 0x1527 1st Secondary resistor R2 of motor (Auto) [LSW] H31
5416 0x1528 1st Inductance L of motor (Auto) [MSW] H32
5417 0x1529 1st Inductance L of motor (Auto) [LSW] H32
5418 $0 \times 152 \mathrm{~A}$ 1st No load current lo of motor (Auto) [MSW] H33
5419 0x152B 1st No load current lo of motor (Auto) [LSW] H33
5420 0x152C 1st Inertia J of motor (Auto) [MSW] H34
5421 0x152D 1st Inertia J of motor (Auto) [LSW] H34
5437 0x153D 1st Proportional gain of speed control(PI control) H50
5438 0x153E 1st Integral gain of speed control(PI control) H51
5439 0x153F 1st Proportional gain of speed control(P control) H52
5447 0x1547 1st Limiter of 0 Hz control H6O
5457 0x1551 PI Proportion gain Change H70
5458 0x1552 PI Integral gain Change H71
5459 0×1553 P Proportion gain Change H72
5633 0x1601 Selection of action at option1 error P1
5634 0x1602 Selection of action at option2 error P2
5643 0x160B Pulse number of the encoder P11

5644
5645
5646
5647 0x160F
5648
5649
5650
5651
5652
5653
5654 0x1615
0×1616 Feed forward gain of position control
5655 0x1617 Loop gain of position control P23
0x160C Selection of Control Mode P12
0x160D Selection of method of Pulse lines input
P13
$0 \times 160 \mathrm{E}$ Stop position at Orientation mode P14
0x160F Speed at Orientation mode P15
0×1610 Set of Orientation direction P16
0×1611 Defining Area of completion of Orientation mode P17
0×1612 Delay time of completion Orientation mode P18
0×1613 Selection of location of electric gear P19
0×1614 The numerator of electric gear P20
P22

5657
0×1619 Selection of Available of compensation of secondary resistor
P25
5658 0x161A Level of detecting over speed P26
5659 0x161B Value of detecting over deviation P27

5663 0x161F Acc/Dec input mode selection P31
5664 0x1620 Stop position setting input mode selection P32
5678 0x162E Timer setting of communication timeout Whilst running (SJ-DN) P44
5679 0x162F Inverter action When communication error (SJ-DN) P45
5680 0x1630 Polled I/O OUTPUT Instance number (SJ-DN) P46
5681 0x1631 Polled I/O INPUT Instance number (SJ-DN) P47
5682 0x1632 Inverter action when Idle mode detected (SJ-DN) P48
5683 0x1633 Motor poles setting for revolutions per minute (SJ-DN) P49
0×2103 2nd Acceleration time 1 [MSW]
F202
8452 0x2104 2nd Acceleration time 1 [LSW] F202
8453 0x2105 2nd Deceleration time $1[\mathrm{MSW}] \quad$ F203
8454 0x2106 2nd Deceleration time 1 [LSW] F203
8707 0x2203 2nd Base frequency A203
8708 0x2204 2nd Maximum frequency A204
8726 0x2216 2nd setting Multispeed frequency 0 [MSW] A220
8727 0x2217 2nd setting Multispeed frequency 0 [LSW] A220

8763 0x223B Selection of 2nd Torque boost Method A241
8764 0x223C Value of 2nd Manual torque boost A242
8765 0x223D 2nd Break point of manual torque boost A243
8766 0x223E Selection of 2nd Control method A244

8783 0x224F 2nd Upper limiter frequency [MSW] A261
8784 0x2250 2nd Upper limiter frequency [LSW] A261
8785 0x2251 2nd Lower limiter frequency [MSW] A262
8786 0x2252 2nd Lower limiter frequency [LSW] A2628816 0x2270 2nd Acceleraion ime 2 [LSW]0×2270 2nd Acceleration time 2 [LSW]A2928817 0x2271 2nd Deceleration time 2 [MSW]A292
8818 0x2272 2nd Deceleration time 2 [LSW] A293A293
8819 0x2273 Selection of 2nd 2-stage accel/decel Method A294
8820 0x2274 2nd Frequency of 2-stage acceleration [MSW] A295
8821 0x2275 2nd Frequency of 2-stage acceleration [LSW] A295
8822 0×2276 2nd Frequency of 2-stage deceleration [MSW] A296
8823 0×2277 2nd Frequency of 2-stage deceleration [LSW] A296
8972 0x230C Level of 2nd Electronic thermal protection B212
8973 0x230D Selection of characteristic of 2nd electronic thermal protection B213
94740x2502 Selection of Motor constant for 2nd motorH202
9475 0×2503 Selection of Motor capacity for 2nd motor H203
9476 0x2504 Selection of Motor poles for 2nd motor H204
9477 0x2505 2nd Speed response gain [MSW] H205
9478 0x2506 2nd Speed response gain [LSW] H205
9479 0×2507 2nd Stability gain H206
9493 0x2515 2nd Primary resistor R1 of motor [MSW] H220
9494 0x2516 2nd Primary resistor R1 of motor [LSW] H220
9495 0×2517 2nd Secondary resistor R2 of motor [MSW] H221
9496 0x2518 2nd Secondary resistor R2 of motor [LSW] H221
9497 0x2519 2nd Inductance L of motor [MSW] H222
9498 0x251A 2nd Inductance L of motor [LSW] H222
9499 0x251B 2nd No load current lo of motor [MSW] H223
9500 0x251C 2nd No load current lo of motor [LSW] H223
9501 0x251D 2nd Inertia J of motor [MSW] H224
9502 0x251E 2nd Inertia J of motor [LSW] H224
9508 0×2524 2nd Primary resistor R1 of motor (Auto) [MSW] H230
9509 0x2525 2nd Primary resistor R1 of motor (Auto) [LSW] H230
9510 0×2526 2nd Secondary resistor R2 of motor (Auto) [MSW] H231
9511 0×2527 2nd Secondary resistor R2 of motor (Auto) [LSW] H231
9512 0×2528 2nd Inductance L of motor (Auto) [MSW] H232
9513 0×2529 2nd Inductance L of motor (Auto) [LSW] H232
9514 $0 \times 252 \mathrm{~A}$ 2nd No load current lo of motor (Auto) [MSW] H233
9515 0x252B 2nd No load current lo of motor (Auto) [LSW] H233
9516 0x252C 2nd Inertia J of motor (Auto) [MSW] H234
9517 0x252D 2nd Inertia J of motor (Auto) [LSW] H234
9533 0x253D 2nd Proportional gain of speed control(PI control) H250
9534 0x253E 2nd Integral gain of speed control(PI control) H251
9535 0x253F 2nd Proportional gain of speed control(P control) H252
9543 0×2547 2nd Limiter of 0 Hz control H260
12547 0x3103 3rd Acceleration time 1 [MSW] F302
12548 0x3104 3rd Acceleration time 1 [LSW] F302
12549 0x3105 3rd Deceleration time 1 [MSW] F303
12550 0x3106 3rd Deceleration time 1 [LSW] F303
12803 0x3203 3rd Base frequency A303
12804 0x3204 3rd Maximum frequency A304
12822 0x3216 3rd setting Multispeed frequency 0 [MSW] A320
12823 0x3217 3rd setting Multispeed frequency 0 [LSW] A320
12860 0x323C Value of 3rd Manual torque boost A342
12861 0x323D 3rd Break point of manual torque boost A343
12862 0x323E Selection of 3rd Control method A344
12909 0x326D 3rd Acceleration time 2 [MSW] A392
12910 0x326E 3rd Acceleration time 2 [LSW] A392
12911 0x326F 3rd Deceleration time 2 [MSW] A393
12912 0x3270 3rd Deceleration time 2 [LSW] A393
13068 0x330C Level of 3rd Electronic thermal protection B312
13069 0x330D Selection of characteristic of 3rd electronic thermal protection B313
13575 0x3507 3rd Stability gain H306

Index

A

A - Standard Functions • 21

B

B - Fine-Tuning Functions • 24

C

C - Intelligent Terminal Functions • 27
Carton Contents • 5
Compatibility, Inverter • 7
Configuration - 13

D

D - Monitoring Functions • 19
DIP-switches • 9, 13

E

error codes • 17
Error LED • 11

F

F - Main Profile Functions • 21

H

H - Motor Constants and Functions • 29

I

Installing • 9
Interface, User • 11

K

keypad, inverter • 17

L

layout, board • 9
LEDs • 9, 11, 13

M

MODBUS Functions, supported $\cdot 15$

N

network operation • 15

0

O - Other Functions • 30
Operation • 15

\bar{P}

P - Expansion Card Functions • 31
parameter list • 19
parameters, inverter • 15

\bar{R}

R - Reference Codes • 32
RXD LED • 11

S

Safety Precautions • 6
Status LED • 11
T

Troubleshooting • 17
TXD LED • 11

W

Warranty • 5
Wiring $\cdot 9$

NOTES:

HITACHI Inspire the Nex́t

Hitachi America, Ltd.

Tarrytown, NY 10591
(C) 2007
www.hitachi.us/inverters

